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resumo

A elevada dependéncia energética de Portugal face ao exterior em termos de
combustiveis fésseis, aliada aos compromissos assumidos pelo Pais no
contexto internacional e a estratégia nacional em termos de politica energética
bem como as teméticas da sustentabilidade dos recursos e alteracdes
climaticas, inevitavelmente obrigam Portugal & necessidade de investir na sua
auto-suficiéncia energética. A estratégia definida pela Unido Europeia, sob a
forma da Estratégia 20/20/20, define que em 2020 60% do total da
electricidade consumida seja proveniente de fontes de energia renovaveis. A
energia edlica constitui presentemente uma das principais fontes de producéo
de energia eléctrica em Portugal, produzindo em 2013 cerca de 23% do
consumo total nacional de electricidade. A Estratégia Nacional para a Energia
2020 (ENE2020), que visa garantir o cumprimento da Estratégia Europeia
20/20/20, prevé que cerca de metade desta meta de 60% seja fornecida pela
edlica.

O presente trabalho pretende aplicar e optimizar um modelo numérico de
previsao do tempo na simulagdo e modelagao do recurso edlico em Portugal,
em zonas offshore e onshore. A optimiza¢cdo do modelo numérico baseou-se
na determinacdo de quais as condi¢des iniciais e de fronteira e opg¢des de
parametrizagdes fisicas da camada limite planetaria a usar no modelo que
proporcionam simula¢des do fluxo de poténcia (ou densidade de energia),
velocidade e direcgdo do vento mais proximas de dados medidos in situ.
Especificamente para zonas offshore pretende-se também avaliar se 0 modelo
numérico, uma vez optimizado, é capaz de produzir dados de vento e fluxo de
poténcia mais concordantes com dados medidos in situ que dados de vento
provenientes de satélites. Neste trabalho ambiciona-se ainda estudar e
analisar possiveis impactos que alteragdes climaticas de origem antropogénica
poderéo ter no recurso eodlico disponivel sobre a Europa no futuro.

Os resultados deste trabalho revelaram que as reandlises do ECMWF ERA-
Interim s&o aquelas que, entre todas as bases de dados de forgamento de
modelos de previsdo numérica presentemente disponiveis, permitem
simulagbes do fluxo de poténcia, velocidade e direccdo do vento mais
concordantes com medicoes de vento in situ. Verificou-se também que as
parametrizagdes da camada limite planetaria Pleim-Xiu e ACM2 sdo as que
permitem ao modelo usado neste trabalho obter os melhores resultados em
termos de simulacdo do fluxo de poténcia, velocidade e direccdo do vento.
Esta optimizagcdo do modelo permitiu uma reducao significativa dos erros de
simulagao do fluxo de poténcia, velocidade e direccdo do vento e, para zonas
offshore, a obtencdo de simulagbes do fluxo de poténcia, velocidade e
direc¢do do vento mais concordantes com medi¢cdes de vento in situ do que
dados provenientes de satélites, resultado este de grande valor e interesse.
Este trabalho revela ainda que alteragdes climaticas de origem antropogénica
poderdo produzir impactos negativos no recurso edlico futuro na Europa,
devido as tendéncias detectadas para uma futura diminuicao das velocidades
do vento especialmente na segunda metade do presente século e sob cenarios
de forte forcamento radiativo.
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abstract

The high dependence of Portugal from foreign energy sources (mainly fossil
fuels), together with the international commitments assumed by Portugal and
the national strategy in terms of energy policy, as well as resources
sustainability and climate change issues, inevitably force Portugal to invest in
its energetic self-sufficiency. The 20/20/20 Strategy defined by the European
Union defines that in 2020 60% of the total electricity consumption must come
from renewable energy sources. Wind energy is currently a major source of
electricity generation in Portugal, producing about 23% of the national total
electricity consumption in 2013. The National Energy Strategy 2020
(ENE2020), which aims to ensure the national compliance of the European
Strategy 20/20/20, states that about half of this 60% target will be provided by
wind energy.

This work aims to implement and optimise a numerical weather prediction
model in the simulation and modelling of the wind energy resource in Portugal,
both in offshore and onshore areas. The numerical model optimisation
consisted in the determination of which initial and boundary conditions and
planetary boundary layer physical parameterizations options provide wind
power flux (or energy density), wind speed and direction simulations closest to
in situ measured wind data. Specifically for offshore areas, it is also intended to
evaluate if the numerical model, once optimised, is able to produce power flux,
wind speed and direction simulations more consistent with in situ measured
data than wind measurements collected by satellites. This work also aims to
study and analyse possible impacts that anthropogenic climate changes may
have on the future wind energetic resource in Europe.

The results show that the ECMWF reanalysis ERA-Interim are those that,
among all the forcing databases currently available to drive numerical weather
prediction models, allow wind power flux, wind speed and direction simulations
more consistent with in situ wind measurements. It was also found that the
Pleim-Xiu and ACM2 planetary boundary layer parameterizations are the ones
that showed the best performance in terms of wind power flux, wind speed and
direction simulations. This model optimisation allowed a significant reduction of
the wind power flux, wind speed and direction simulations errors and,
specifically for offshore areas, wind power flux, wind speed and direction
simulations more consistent with in situ wind measurements than data obtained
from satellites, which is a very valuable and interesting achievement. This work
also revealed that future anthropogenic climate changes can negatively impact
future European wind energy resource, due to tendencies towards a reduction
in future wind speeds especially by the end of the current century and under
stronger radiative forcing conditions.
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Chapter 1 - Introduction

1.1 - Motivation

In the last decades, the world population growth has escalated at an unprecedented pace.
While in the 1950°s the world population was around 2,500 million people, presently this
number practically tripled to around 6,700 million. The United Nations project that in 2050
the world population will reach 9,200 million people. This increasing population means
higher needs of food, water, transports, communications, infra-structures, etc. In short,
more energy. Aside the well recognized fact that traditional energy sources based in fossil
fuels are finite, increasingly scarce and, consequently, expensive, this growing global
energy need must be faced bearing in mind the sustainability of the planet without
aggravating global warming, climate changes, loss of biodiversity, geopolitical tensions

and socio-economical unbalances.

The global warming and climate change issues are of paramount interest for the planet, and
one of the main sources of uncertainty for future projections of the global political and
socio-economical outlook. Presently, few (if any) doubts remain if the observed rises of
global temperatures and changes in the global climatic system in recent decades are of
anthropogenic sources or not. The latest report of the Intergovernmental Panel on Climate
Change (IPCC), the IPCC Assessment Report 5 (IPCC AR5, 2013) confirms that it is
virtually certain (>95%) that human activity has been the main cause of the observed
increasing temperatures since the mid-20™ century. Other possible factors, such as natural
internal variability of the climate system and natural external forcings (variation of solar
activity, activity of volcanoes, etc.), are considered to have a marginal contribution to this
global warming. These climate changes are a consequence of the continuously increasing
emissions of greenhouse gases (GHG), mainly CO,, to the atmosphere, and several IPCC
Assessment Reports are unanimous in stating that one of the main emission sources of

GHG is the electricity generation from fossil fuels combustion (IPCC AR4, 2007; IPCC



ARS5, 2013). It is worth mentioning some conclusions of IPCC ARS5 that should be faced
with the utmost attention and concern: the 1983-2012 period was likely the warmest 30-
year period of the last 1400 years in the Northern Hemisphere, fact that was confirmed by
the Wold Meteorological Organization (WMO) based on measured temperatures since
1850, stating that 13 of the 14 warmest years were observed in the last 14 years; global
temperatures can rise 1 to 5°C over the next 100 years, depending on the amounts of GHG
emitted and the sensitivity of the climate system; sea-level can rise 28 to 98 cm by the end
of the current century, and to more than 3 meters by 2300; if no GHG emissions mitigation
strategies are employed, in summer periods the Arctic Ocean will likely become virtually

ice-free before 2050.

Thus, traditional energy sources like fossil fuels are, on the one hand, becoming
increasingly scarce and costly due to their finite nature and, on the other hand, one of the
main responsible for climate changes and the deterioration of the global environment.
Thus, a revolution in the energy sector paradigm is unavoidable and alternative energy
sources must be obtained. Renewable energy sources are a cornerstone in this revolution,
and all efforts must be employed to support the penetration of renewable energy sources in

energy production systems at a global scale.

Portugal can be seen as a good example in terms of support and investment in renewable
energy sources, being the 4™ country in Europe with higher penetration of renewable
energy sources in the total electricity consumption. According to the Portuguese
Association of Renewable Energies (APREN), in 2013 renewable energy sources (wind,
biomass, solar and hydropower) supplied 58,3% of the total national electricity
consumption that, according to the Portuguese Economy Ministry, allowed savings of 846
million EUR (ME) in fossil fuels imports and purchase of CO, emission licenses. Within all
renewable energy sources presently used for electricity generation, wind is one of the
global leaders in terms of installed generating capacity, fastest growth and technological
maturing. In Portugal, wind-derived electricity production has grown in the last decade at a
rate unbeaten by any other electricity generation source. According to the Portuguese
Agency of Energy and Geology (DGEG) and the Portuguese Electrical Company (EDP), in
2003 Portuguese wind farms produced 494 GWh of electricity, corresponding to about 1%



of the total national electricity production. 2005 witnessed a turning point, when electricity
produced from the wind reached 1.77 TWh, roughly 4% of the total national electricity
consumption. From there on, this growth escalated. In 2008 wind-derived electricity
reached more than 10% of the total national electricity production, and in 2012 the
benchmark of 10 TWh of electricity production was reached by national wind farms. By
half of 2013, DGEG announced that wind energy production already reached 11.5 TWh,
more than 23 times what was produced in 2003. These figures clearly reflect the
importance, impact and exponential growth of wind energy in Portugal witnessed in only
one decade. Even at a global scale, and bearing in mind that is a relatively small country,
Portugal is presently one of the world leading countries in terms of installed wind power,
and this growth is still in progress. In 2011 and 2012, Portugal was ranked in 10" place
worldwide and 5" place among European countries in terms of total wind energy installed
capacity (Global Wind Energy Council 2011, 2012). This high wind energy installed power
resulted that in the last years wind energy has been one of the main sources of national
electricity production. Portugal is the 2™ country in the world where wind power
contribution to the overall electricity consumption is higher, and growing each year: in
2010 Portugal was able to achieve an 18% quota of wind-derived energy in the total annual
energy consumption, outranked worldwide only by Denmark (Global Wind Energy
Council, 2010), and in 2012 this quota increased to 20%, again only outranked by
Denmark (APREN, 2013). In 2013 Portuguese wind farms were able to produce 23% of
the annual electricity consumption, supplying 84% of the instantaneous total electricity
consumption at 2 AM October 23 and 93% at 4:30 AM November 11%, According to the
Portuguese Economy Ministry, the performances of national wind farms in 2013 resulted
in a positive financial impact of 450 ME due to savings in fossil fuels imports and CO,
emission licenses purchasing. As aforementioned, in 2013 Portugal saved 846 ME due to
the use of renewable energy sources in its electricity production. As it can be seen, in this
year wind power alone was responsible for half of this saving. The prospects for the
current year of 2014 are even more encouraging: in January 2014, 35% of the total national

electricity consumption was supplied by wind power (APREN, 2014).

Despite these recent promising figures, Portugal still has in average a strong dependency

from foreign energy sources of about 70-80% in terms of primary energy sources (source:



Portuguese Economy Ministry), being that these imported primary energy sources are
mainly constituted by fossil fuels. As an example, according to the Portuguese National
Statistics Institute, the importation of fossil fuels in 2011 represented a deficit in the
national trade balance of about 7,200 ME. The higher use of endogenous renewable energy
sources witnessed in the last years allowed the foreign energy dependence to be reduced in
about 7%. Thus, the path to further reduce this foreign energy dependence and increase

national electricity production based in renewable energy sources is still long.

Since the late 1990’s, Europe and the European Union (EU) have been leading the efforts
to support and materialize the penetration of renewable energy sources in electricity
production. These goals were reasserted in the 20/20/20 Energy and Climate Package
(URL 1), approved by the EU in late 2008. This strategy binds all EU 27 state members to
reduce GHG emissions in 20% by 2020 (relatively to 1990), increase to 20% the
contribution of renewable energy sources to the total energy consumption (more than
doubling the 2005 8.5% quota), and less 20% energy consumption by increasing energetic
efficiency. At EU level, and considering the current wind energy growth rate, it is expected
that wind can provide up to one third of this 20% of renewable energy sources contribution
to the total energy consumption, with its electrical generating installed capacity increased
up to fivefold in the upcoming decade (de Vries, 2008a and 2008b). These expectations

reflect the central role of wind energy in the EU energetic strategy.

In order to comply with these EU targets, Portugal developed the National Energy Strategy
2020 (ENE2020), approved by the Portuguese Government in April 2010 (URL 2). The
ENE2020 is more ambitious and went even further than the EU 20/20/20 Energy and
Climate Package, aiming to achieve 31% of renewable energy sources contribution to the
total energy consumption in 2020. Although these total energy consumption refers to
transports, heating/cooling systems and electricity consumption all together, the latter is the
one with the highest goal in terms of renewable energy sources contribution: in 2020, 60%
of the total national electricity consumption must be produced by renewable energy
sources (wind, solar, biomass, waves and hydropower). ENE2020 expects that about half
of this 60% goal will be supplied by wind power alone, foreseeing that by 2020 the
national wind energy installed capacity can double from the actual 4,724 MW (late 2013)



to 8,500 MW, which reinforces the extreme importance of wind power to Portugal energy

strategy for the upcoming years.

Therefore, the high Portuguese foreign energy dependency, scarcity and high cost of
imported fossil fuels, commitments to EU 20/20/20 Energy and Climate Package and goals
defined by the ENE2020, together with the paradigms of sustainability and climate
changes, inevitably bind Portugal to invest in its energetic self-sufficiency by taking
advantage of its endogenous renewable energy sources. Considering the ENE2020
expectations on wind power contribution to total electricity consumption, it becomes clear
the need for Portugal to further continue and even increase its investment in wind farms
installation and/or optimisation. Although, and as previously mentioned, Portugal has
already a considerable wind energy portfolio, its growing potential is still high: (i)
upgrading the existing wind farm turbines by installing the latest models, more efficient
and with higher energy production capabilities; (ii) installing new wind farms in areas until
now considered as economically unattractive, but that future development on wind turbines
technology might allow a profitable exploration; (iii) installing offshore wind farms. The
latter has a huge growth potential since until the present moment Portugal does not have
any offshore wind farm installed, mainly due to the fact that its continental shelf shows
some unfavourable characteristics to the installation of offshore wind turbines (steep slopes
and deep near-coast waters). However, future development and progress on offshore wind
turbines technology are expected to overcome these limitations (for example, floating
offshore wind turbines). Therefore, these national goals and expectations regarding the
expansion of wind farms pose several and new challenges to the national wind power
industry, mainly in mapping the most attractive sites for wind energy exploration and
accurately assess the wind energy production potential of a given area. Also at an
international level, the current and future expansion of the wind energy markets combined
with the explosive growth of worldwide installed wind power over the last decade and the
progressive liberalization of electricity markets support the need to accurately and

efficiently perform these tasks.

Wind energy spatial mapping and production potential assessment at a given area are

traditionally based on classical methods that rely on in situ wind measurements. These



methods are still the most reliable for an efficient and accurate spatial mapping of wind
energy resource and/or wind energy production potential assessment at a given area,
meaning higher certainty in the expected available wind resource and lower associated
investment risks, key prerequisites for the successful development of wind energy projects
(Carvalho et al., 2013). These in situ wind measurements, performed specifically for wind
energy exploration purposes, are planned and conducted by wind farms promoters. These
wind measuring campaigns are performed in candidate areas for wind farms installation, in
which are installed one or more wind measuring masts that collect wind speed and
direction observations for one or more years. However, these wind measurement
campaigns have some constraints, namely their high costs (in particular for offshore areas,
where the costs of installing wind measuring masts are exponentially higher when
compared to onshore sites), data quality and/or availability and the need to perform
measurements for a representative period, usually with a minimum duration of one year.
Moreover, these time and money consuming measurement campaigns may reveal that the
sites under analysis do not show an economically attractive wind energy potential, which
will lead to an irreversible loss of a considerable amount of investment already

materialized.

As an alternative to these tailored and “wind farm oriented” wind measuring campaigns,
wind observations are usually available within national meteorological services measuring
networks (although usually this data has restricted access). However, usually these
meteorological stations are located in urban areas, which are not typically good candidates
for wind farms installation due to construction restrictions and unattractive wind energetic
potential caused by the fact that urban buildings tend to obstruct and dissipate low level
winds. Adding to this, usually these meteorological stations measure the wind speed and
direction at 10 meters (m) above ground level (a.g.l), and for wind energy spatial mapping
and production potential assessment purposes higher altitudes are considered (80 to 120 m
a.g.l.). Specifically for offshore winds, given that meteorological stations are not installed
in ocean areas, there are other alternatives: wind measurements collected at buoys
deployed in ocean, measurements collected onboard ships and vessels and satellite
observations. However, these types of wind measurements are usually taken in a limited

spatial and/or time window (in the case of buoys and vessels measurements), or at an



insufficient time and/or spatial resolution (typically for satellite derived wind data), thus
making the data unrepresentative of the wind regime over a medium or large spatial area or
temporal period. Moreover, usually these types of ocean wind measurements suffer from
large data gaps due to instruments malfunctions and deterioration, related to the typical
ocean harsh conditions. Furthermore, the increasing evolution of the wind energy industry
is bringing the need to obtain a preliminary knowledge of the available wind resource at
sites with few (or not at all) local measurements — wind resource mapping. In these sites,
this preliminary knowledge of the local wind regimes is of the utmost importance, at least

in a preliminary stage in order to help the wind production potential assessment process.

Considering these disadvantages of tailored wind measurement campaigns, together with
the growing needs of the wind power industry, the value of an alternative way to obtain
reliable wind data for wind energy spatial mapping and preliminary production potential
assessment becomes obvious. Numerical weather prediction (NWP) models, which are
atmospheric models that consider physical phenomena such as frictional, thermal and
convective effects, are a very powerful and useful tool to simulate meteorological variables
(Carvalho et al.,, 2012). In the recent past, NWP simulations have been used with
interesting and promising results in several applications within the wind energy sector:
building wind resource maps in spatially large areas, useful in large scale electrical grid
planning and preliminary assessment of potential wind energy exploration sites; computing
local long term climatologies to allow the assessment of the wind variability and the
representativeness of measurement campaigns; and in the growing field of wind power
production short term forecasting, due to the need to plan electrical grid balance.
Therefore, due to the inexistence of wind observations for a given spatial area and/or time
period or to the need of a high resolution representative mapping of the local wind resource

over a determined area, NWP wind modelling might be unavoidable.

However, as with any numerical simulation, the limitations of this approach should be
carefully considered on a case-by-case analysis. The use of NWP models as source of wind
data offers, on the one hand, advantages when compared to wind measuring stations such
as gap-free and fast data availability (depending on the available computational resources),

low operational costs (most of the mesoscale models are freely available for download and



the costs involved in their use are residual), and higher sampling resolution (both
horizontal and vertical, allowing the computation of virtual wind data sets for several sites
at different heights). On the other hand, there are disadvantages due to the uncertainty
associated to wind data derived from these types of models: NWP models do not represent
the real state of the atmosphere like in situ observed measurements do, since atmospheric
simulation models are, by definition, a simplified approximation of the real atmosphere.
Thus, errors and deviations between modelled and real atmospheric variables will always
occur. In order to minimize modelling errors, a detailed optimisation of the NWP model is
a mandatory step, namely in testing the several NWP model running options and assessing

which configuration produces the best modelling results.

Due to the chaotic nature of the atmosphere dynamics (Lorenz 1996), extremely small
errors in defining the initial state of the atmosphere in NWP models will severely amplify
and completely distort the simulated future atmospheric state. As stated by Edward Lorenz,
“the approximate present does not approximately determine the future”. Therefore, one of
the most critical issues regarding NWP modelling is the initial and boundary conditions
used to force the model. Typically, these initial and boundary data are extracted from
reanalysis datasets, which provide all the atmospheric information needed by NWP models
to run their simulations. Reanalysis are gridded datasets that combine data obtained from
global circulation models (GCMs) with meteorological measurements, providing a
synthesis of the available worldwide observations in the context of a physical model
(Trenberth et al., 2010). Currently, there are several freely available reanalyses datasets
produced by leading meteorological agencies and research institutes (USA, Japan and
Europe). Although all reanalyses share common features and are based in the same
philosophy, they significantly differ from each other mainly in what is related to the GCM
used, spatial and temporal resolutions, observed data assimilation methods, amount and
sources of assimilated measurements, etc.. Therefore, it becomes relevant to test these
several initial and boundary data available in order to assess if there are significant
differences in using one instead of another and, if so, which one provides the most realistic
initial and boundary data to drive wind modelling and thus allow a more accurate wind

simulation by NWP models.



Aside the initial atmospheric state issue, wind modelling, and particularly the near-surface
wind modelling, is still a major challenge to atmospheric modellers involved in
meteorological research and applications mainly due to the strong interaction between
these low-altitude atmospheric flows and the local terrain (topography, land use,
roughness, etc.). Offshore winds, and particularly coastal/near-coast winds, constitute an
even bigger modelling challenge when compared to open sea and onshore winds due to the
fact that these winds are strongly influenced not only by the neighbour onshore topography
but also by discontinuities between land and sea roughness and thermal gradients that
result from land-sea temperature differences. Thus, the strong interaction between these
low-level atmospheric flows and the surrounding topography and geographical
characteristics makes that near-surface winds and its modelling results can vary according
to the geographical area under study and its characteristics. This interaction, which
influences the flow circulation patterns particularly for near-surface winds, is described by
the atmospheric planetary boundary layer (PBL) theory. Since both onshore and offshore
wind energy are extracted from near surface flows, the modelling results will strongly
depend upon the ability of the NWP model to correctly represent and simulate PBL
processes. Usually the majority of these occur at spatial scales smaller than the model grid
resolution, making them sub-grid processes (thus, unresolved explicitly by the model) that
require an implicit treatment. This is done using physical parameterization schemes, which
use physical assumptions and empirical approximations to represent these processes.
Typically, NWP models have available for the modeller several different choices regarding
PBL processes parameterizations. Thus, another one of the main issues regarding NWP
near-surface wind modelling is related to the choice of which PBL parameterization

scheme produces the best wind modelling results for the desired geographical area.

Coming back to the climate changes issue, and although wind energy growth is a key part
of the solution to reduce GHG emissions and consequently mitigate future climate change,
this renewable energy source is highly sensitive to climate change itself due to possible
changes in future atmospheric flow patterns. Regardless of what GHG mitigation policies
and strategies will be effectively employed in the future (if any), climate changes are
already on their way and will continue to occur in the upcoming decades due to irreversible

consequences produced by past human actions. The typical lifetime of wind farms is



around 20 to 30 years (and can be more), and the question whether the energy yield
expected when the wind farm is, or was, planned will change during its operation window
due to ongoing climate changes can determine the success or failure of the wind farm to
achieve its production goals, affecting their financial viability and economical
attractiveness to investors. Given that the wind energetic potential varies with the wind
speed cubed, even apparently small variations in future wind circulation patterns and
characteristics can strongly impact the future wind energetic production potential.
Moreover, it is important to evaluate if future wind power resource will change and
quantify this hypothetical change, in order to assess if this renewable energy source will be
able to continue to actively contribute to GHG emissions reduction in future times. On the
one hand, if climate changes significantly impact future wind characteristics in a negative
way (by decreasing wind speeds) the future wind energy resource will be lower. Thus,
wind power will likely not be able to maintain an active and vital contribute to GHG
emissions reduction, and other renewable energy sources should be encouraged. Therefore,
the climate change itself will inherently diminish our ability to fight it, in a kind of “snow
ball” effect, at least in what is related to the wind energy role in GHG emissions
mitigation. On the other hand, if climate changes will originate stronger future winds,
future prospects of wind energy growth are encouraging and a stronger support of new

wind farms projects and technology should be actively materialized.

Aside the assessment of hypothetical wind energy resource changes due to anthropogenic
climate changes, mainly translated by changes in the future mean wind speeds and their
geographical distributions, other aspects can also strongly impact the future wind energy
effective use. Changes in future inter and intra-annual variability of the wind resource can
affect the reliability of the produced wind-derived electricity (Pryor and Barthelmie, 2010).
The higher the intra-annual variability, more variable will be the injection of the produced
energy into the electrical grid, causing offer-demand balancing problems and enhancing the
need to perform short-term wind energy production forecasts. Inter-annual variability is a
key issue for the economic feasibility of a wind farm: since the expected annual energy
yield calculated for a wind farm in its planning stage is typically based in 1 to 3 years of
wind measurements, if the years used as reference to compute the expected wind farm

energy production are exceptionally higher or lower in terms of average wind speeds (this
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is, abnormal years in terms of the mean wind climate) the obtained estimates of the wind
farm energy yield will be significantly biased and not realistic for the entire wind farm
lifetime. These biased wind farm energy production estimates can severely affect the wind
farm economic and financial feasibility. Therefore, it is vital to investigate these issues,
assessing if climate changes can alter future wind energy resources in a way that it
becomes advisable for the wind energy industry sector to adapt their growth, operation,

technological and business strategies.

Although Portugal has a high and growing wind energy installed productive capacity and
high wind energy derived electricity quotas in its annual electricity consumptions, research
about such critical issues regarding NWP wind modelling has not yet been done for
Portuguese territory. Even for other areas of the globe, published research about these
themes is scarce and not always objective. This work aims to fill these gaps and optimise a
NWP model for wind simulation focused on national territory, by performing a thorough
and complete testing of which initial/boundary datasets and PBL physical
parameterizations produce more accurate wind speed and direction simulations for
Portuguese territory, for both onshore and offshore areas. Furthermore, and due to the
newest IPCC future climate projections presented in the recent IPCC AR5 and based in the
recently completed Fifth Coupled Model Intercomparison Project (CMIP5), it becomes
important to assess and quantify the impacts of the latest CMIP5 future climate projections
on the wind energetic resource in Europe, one of the main areas in terms of installed wind-
derived electricity generating capacity in the world. There is a lack of research that
addresses this issue in the light of the new CMIP5 future climate projections for Europe, or

for other areas of the globe, which this work also aims to cover.

1.2 — Objectives

The objectives of this thesis can be summarized as follows:

1. To implement and optimise a NWP model in the simulation and modelling of the wind

energy resource in Portugal, both for offshore and onshore areas. The NWP optimisation is
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focused in the determination of which initial/boundary conditions and PBL physical
parameterizations options provide wind power flux, wind speed and direction simulations

closest to measured wind data.

2. Specifically for offshore areas, it is also intended to assess if the NWP model, once
optimised, is able to provide power flux, wind speed and direction simulations more
consistent with measured wind data than offshore wind measurements collected by

satellites, a widely used alternative source of measured offshore wind data.

3. Finally, this work also aims to assess possible impacts that anthropogenic climate
changes may have on the future wind energetic resource in Europe, one of the main areas
in terms of installed wind-derived electricity generating capacity in the world, by analyzing

the latest CMIP5 future climate projections.

By accomplishing the first two objectives, the present work has the ambition to objectively
and decisively contribute to the progress of the wind energy penetration in Portugal, vital
for Portugal to: reduce its foreign energy dependence; balance its commercial balance by
saving financial resources in importing expensive fossil fuels and acquisition of CO,
emission licenses; comply with its international commitments within the EU 20/20/20
Energy and Climate Package and with its internal goals defined by the national ENE2020;
and follow a “greener” path regarding the climate changes and planet sustainability
paradigms. The third objective aims to shed a new light in the issue of climate changes
impacts on future wind energy resource and production, by analyzing the newest and state-
of-the-art future wind climate projections offered by the CMIP5 project, with the ambition
to assess if wind energy will continue to be a strong and active part of the solution to
reduce GHG and mitigate future climate changes and also to offer more realism in the wind
farms expected energy production estimates for its entire lifetime, vital for the success of

the wind farms projects and for the wind energy stakeholders.
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1.3 — Structure of this work

Due to the fact that all the work developed in this thesis was already published (or is
currently submitted for publication) in international peer-reviewed scientific journals, this

thesis was structured in the following way:

Chapter 2 presents a description of the NWP model used in this work, since this was not

thoroughly done in the published articles.

Chapter 3 presents the research about the optimisation of the NWP model regarding which
initial and boundary conditions used as forcing provide wind power flux, wind speed and
direction simulations closest to in situ measured wind data. This chapter is composed by
two research articles published in international peer-reviewed scientific journals, in its
original published format: the first article focusing on onshore areas and the second article

dedicated to offshore areas.

Chapter 4 presents the research about the optimisation of the NWP model regarding which
PBL physical parameterization options provide wind power flux, wind speed and direction
simulations closest to in situ measured wind data, both for offshore and onshore areas. This
chapter is constituted by one research article published in an international peer-reviewed

scientific journal in its original published format.

Chapter 5 assesses if the NWP model, once optimised, is able to provide power flux, wind
speed and direction simulations more consistent with in situ measured offshore wind data
than wind measurements collected by satellites and other alternative sources. This chapter
is presented in the form of two research articles published in international peer-reviewed

scientific journals, in its original published format.

Chapter 6 focuses in climate changes impacts of future wind energy resource in Europe.
This research is presented in the form of an article presently submitted for publication to an

international peer-reviewed scientific journal.
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Chapters 3 to 6 include, in the published articles, introductory notes and literature surveys

regarding the state-of-the-art of each topic under investigation.

Chapter 7 provides an integrated synthesis of the main conclusions derived from the

research presented in Chapters 3 to 6.

Chapter 8 addresses the future work to be done in the issues focused in this thesis,
suggesting possible research paths to develop and deepen the issues investigated in this

thesis.
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Chapter 2 — Description of the NWP model

The NWP model used in this work to perform the wind simulations was the Weather and
Research Forecast (WRF) mesoscale model. Besides its numerical weather prediction
applications, WRF is also an atmospheric simulation system designed for both research and
operational applications. The WRF model is a state-of-the-art atmospheric modelling
system, being the result of a continuous collaborative effort in which several institutions
are involved: the National Centre for Atmospheric Research’s (NCAR) Mesoscale and
Microscale Meteorology (MMM) Division, the National Oceanic and Atmospheric
Administration’s (NOAA) National Centres for Environmental Prediction (NCEP) and
Earth System Research Laboratory (ESRL), the Department of Defense’s Air Force
Weather Agency (AFWA) and Naval Research Laboratory (NRL), the Centre for Analysis
and Prediction of Storms (CAPS) at the University of Oklahoma, and the Federal Aviation

Administration (FAA), with the participation of university scientists.
2.1 — General characteristics

WRFs Advanced Research (ARW) dynamical core, version 3.4.1 (released in 2011), was
the one used in this work. The summarized information regarding the WRF model
presented in this section was taken from WRF-ARW Version 3 Modelling System User’s
Guide (NCAR, 2012) and from the WRF Version 3 NCAR Technical Note (Skamarock et
al., 2008). Detailed information about all aspects of this modelling code can be found on
these references. The ARW solver integrates the compressible, nonhydrostatic Euler
equations and follows a conservative approach for scalar variables. Its prognostic variables
are, among others: cartesian velocity U and V components, vertical velocity (W),
perturbation potential temperature, perturbation geopotential and perturbation surface
pressure of dry air, turbulent kinetic energy, water vapour mixing ratio, rain/snow mixing
ratio, cloud water/ice mixing ratio, etc.. Its time integration is based in a 2™ or 3™ order

Runge-Kutta scheme with smaller time step for acoustic and gravity-wave modes. The
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spatial discretization uses 2™ to 6" order advective schemes. Full Coriolis terms are
included to consider Earth rotation effects. WRF offers several nesting options (one-way,
two-way interactive and moving nest), where higher resolution simulation meshes can be
nested on lower resolution simulation grids. WRF also offers the capabilities of performing

grid and observational nudging.

2.2 -WRF-ARW modelling system architecture and operating chain

An overview of WRF modelling system architecture is presented in Figure A, in the form
of a flow chart that illustrates the several components of the model and the respective

operating order.

— 5

STATIC i GEOGRID
DATA

e

REAL DATA
- ARW

GRIB | UNGRIB REAL SYSTEM
DATA /

D g

WRF METGRID / WRF
PREPROCESSING
SYSTEM

Figure A — WRF-AWR modelling system flow chart

The WRF Pre-Processing System (WPS) is a suite of programs that ingest terrestrial (static
data) and meteorological data (in GRIB format) and processes them for input to the ARW
real data system. The GEOGRID program is used to build a physical simulation grid by
defining the projection type, location on the globe, size of the grid, nest locations, grid
horizontal resolution (among other parameters) and incorporating terrestrial static data
(topography, land-use, albedo, snow and vegetation cover, etc.) into that grid. The WRF-
ARW supports grid nesting that allows increased resolution over a region of interest, by

introducing additional grid(s) into the simulation. The option to add (or not) nested
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simulation domains to the simulation is done in the GEOGRID program. Figure B presents

two schematics of how nested domains can look like.

Figure B — Nested simulation grids

In Figure B, grid 1 is called the “parent domain” and grids 2 to 4 are the nested domains.
As it can be seen, the nested domains can be nested in any of the other domains, as long as
the grid where the domain is nested has a coarser resolution than the one to be used in the
nested grid. The ability to use nested domains is of great utility since it allows high-
resolution simulations maintaining model stability and accuracy. Interaction between the
parent (coarser) and nested (finer) grids can be defined in two different ways: 1-way
nesting, where information (lateral boundaries conditions) from the coarser (parent) grid is
passed to the finer grid only; and 2-way nesting, where the finer grid solution replaces the
coarser grid solution in grid points that lie inside the finest grid and this information
exchange between the grids is in both directions (coarser-to-finer for the fine-grid lateral

boundary computation and finer-to-coarser during the feedback at each coarse-grid time

step).

The programs UNGRIB and METGRID are responsible for taking the meteorological data
to be used as initial and boundary forcing conditions for the simulation and process them
for incorporation in the simulation grid(s) provided by GEOGRID. While UNGRIB
extracts the necessary data and reformats the GRIB meteorological data files into an
internal binary format readable by WREF/WPS, METGRID horizontally interpolates this
meteorological data onto the simulation grid(s). The output from the WPS package
provides a complete 3-dimensional state of the atmosphere on the model grid(s) at the

selected time instants, which is after used by the ARW real data system. This output
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contains: 3-dimensional fields of temperature, relative humidity and horizontal components
of momentum; 2-dimensional static terrestrial fields that include albedo, Coriolis
parameters, terrain elevation, vegetation/land-use type, land/water mask, map scale factors,
map rotation angle, soil texture category, vegetation greenness fraction and
latitude/longitude; and 2-dimensional time-dependent fields which include surface pressure
and sea-level pressure, layers of soil temperature and soil moisture, snow depth, skin

temperature, sea surface temperature and a sea ice flags.

Each one of these resulting 3-D grids (one for each time instant and for each domain)
consists in a staggered Arakawa-C type grid (Figure C), where the U and V components of
horizontal velocity (wind) are normal to the respective faces of the grid cell, and the mass,
thermodynamic, scalar and chemistry variables are located in the centre of the cell. The
variable staggering has an additional column of U in the x-direction and an additional row
of V in the y-direction since the normal velocity points define the grid boundaries. The
horizontal momentum components reflect an average across each cell-face, while each
mass, thermodynamic, scalar and chemistry variable is the representative mean value
throughout the cell. Feedback is handled to preserve these mean values: the mass,
thermodynamic, scalar and chemistry fields are fed back with an average from within the
entire coarse grid point and the horizontal momentum variables are averaged along their

respective normal coarse grid cell faces.
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Figure C — WREF horizontal staggered grid
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In the case of using nested domains, the staggered nested grids look like the ones shown in

Figure D.
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Figure D — Nested staggered horizontal grids

It should be borne in mind that although the WPS output consists in 3D grids, the vertical
levels of these grids are the ones provided by the original forcing data (e.g., global models
vertical levels). Thus, after running METGRID, which builds the initial and boundary data
grids, the next step is to vertically interpolate the data onto the WRF model vertical levels.
This is done by the REAL program (for simulations applied to real case studies, as is the
case of this thesis). WRF vertical coordinates are terrain-following, dry hydrostatic-
pressure, where the model top is a constant pressure surface (Figure E). These vertical

coordinates, also called n (eta) levels, are defined by the following equation:

_ (Ph_Pht)
_(Phs_Pht)

Where Py, is the hydrostatic component of the pressure, Py is the hydrostatic pressure at the
surface and Py is the hydrostatic pressure at the model domain top boundary. The
coordinate definition is the traditional o-coordinate used in many hydrostatic atmospheric
models. n varies from a value of 1 at the surface to 0 at the upper boundary of the model

domain. This vertical coordinate is also called a mass vertical coordinate.
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After building the input grids for the ARW real data system (WPS + REAL), which
basically are the initial and boundary conditions of the simulation interpolated to the
simulation domain(s), the next step will be to run the simulation. This is done by running
the WRF program of the ARW real data system. The simulation configuration regarding all
of its aspects is done in the configuration file of the WRF program. This configuration file
defines, among other options, the temporal design of the simulation (starting and end dates,
tie interval of the output, etc.), the domains configuration (nested or not, time steps, grid
horizontal and vertical resolutions, etc.), the four dimensional data assimilation (FDDA)
and the physical configuration of the simulations. The FDDA system, also known as
nudging, consists in a method of maintaining the simulation close to reference datasets
(considered as good representations of the atmospheric state, usually reanalysis/analyses
and/or observations datasets) over the course of the simulation. This system supports two
different types of FDDA, which can be used separately or in combination. Grid/analysis
nudging forces the simulation towards a reanalyses/analyses dataset in all grid points.
Observational nudging locally forces the simulation towards measured data in the vicinity
of the measurement site. These FDDA methods are very useful to minimize the model
divergence and accumulation of truncation errors in long simulations periods, in which the
model typically is not often reinitialized. Since this work focuses on the physical

parameterization schemes available in WRF, a brief description of the main characteristics
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of the several groups of physical parameterization options available in WRF-ARW is

presented.

2.3 —-WRF-ARW physical parameterizations

WREF’s physical parameterizations are employed to include the effects of sub-grid
processes in the simulation grid. Sub-grid processes are usually defined as physical
processes that occur at a spatial and/or temporal scale smaller than the model grid/time-
step resolution and, therefore, cannot be explicitly solved by the model. In the
impossibility of an explicit representation of such phenomena, an implicit representation of
the sub-grid processes effects (and not the processes “per se”) is included in the model grid
variables (explicitly solved) through the use of parameterization schemes. These
parameterization schemes are based on conceptual or empirical relationships to
approximate the impact of sub-grid processes on the resolved scale dynamics and
thermodynamics. WRF’s physical parameterizations can be divided into different
categories, each one containing several available choices. The physic parameterizations
categories are: microphysics, cumulus, radiation, surface layer (SL), land-surface models

(LSM) and planetary boundary layer (PBL).

Microphysics parameterization schemes deal with processes controlling formation of cloud
droplets and ice crystals, their growth and fall-out as precipitation. These schemes include

explicitly resolved water vapour, cloud, and precipitation processes.

Cumulus parameterization schemes are responsible for the sub-grid scale effects of
convective and/or shallow clouds, and are designed to represent vertical fluxes due to
unresolved updrafts/downdrafts and compensating motion outside the clouds, providing
also vertical heating, moistening profiles and the convective component of surface rainfall.
Cumulus parameterizations are theoretically only necessary to use in grid sizes greater than
approx. 10 km, in order to properly release latent heat on a realistic time scale in the

convective columns.
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Radiation schemes handle the atmospheric heating due to radiative flux divergence and
surface downward long- and short-wave radiation for the ground heat budget. Long-wave
radiation includes infrared or thermal radiation absorbed and emitted by gases and
surfaces. Upward long-wave radiative flux from the ground is determined by the surface
emissivity, which depends on the land-use type and ground temperature. Short-wave
radiation includes visible and neighbour wavelengths of the solar spectrum. Although the
only source of short-wave radiation is the Sun, processes such as absorption, reflection,
and scattering in the atmosphere and at surfaces are included. The upward short-wave
radiation flux is the reflection due to surface albedo. In the atmosphere, radiation schemes
respond to model-predicted cloud and water vapour distributions, as well as specified

carbon dioxide, ozone, and (optionally) trace gas concentrations.

Surface layer schemes deal with the friction velocities and exchange coefficients that allow
the calculation of surface heat and moisture fluxes by the land-surface models, and surface
stress in the planetary boundary layer scheme. Over water surfaces, the surface layer
scheme calculates the surface fluxes and diagnostic fields. These schemes provide the
stability-dependent information about the surface layer for the land surface and PBL

schemes.

The land surface models provide heat and moisture fluxes over land points and sea-ice
points by combining information from the surface layer (atmospheric information),
radiation (radiative forcing) microphysics and convective schemes (precipitation forcing),
together with internal information on the land’s state variables and land surface properties.
These fluxes provide a lower boundary condition for the vertical transport done in the PBL
schemes (or the vertical diffusion scheme in the case where a PBL scheme is not run, such
as in large-eddy mode). Land surface models update the land’s state variables which
include the ground (skin) temperature, soil temperature profile, soil moisture profile, snow

cover, and possibly canopy properties.

Planetary boundary layer schemes deal with the vertical sub-grid scale fluxes due to eddy
transports in the entire atmospheric column, not just the boundary layer. Thus, when a PBL

scheme is activated, explicit vertical diffusion is turned-off with the assumption that the
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PBL scheme will handle this process. The surface fluxes are provided by the surface layer
and land-surface model schemes. The PBL schemes determine the flux profiles within the
well-mixed boundary layer and the stable layer, and thus provide atmospheric tendencies
of temperature, moisture (including clouds), and horizontal momentum in the entire
atmospheric column. The schemes are one-dimensional, and assume that there is a clear
scale separation between sub-grid eddies and resolved eddies. This assumption will
become less clear at grid sizes below a few hundred meters, where boundary layer eddies
may start to be resolved, and in these situations the scheme should be replaced by a fully

three-dimensional local sub-grid turbulence scheme such as the TKE diffusion scheme.

Although this categorization of model physics, there are many interactions between them
through the model state variables (potential temperature, moisture, wind, etc.) and their
tendencies, and through the surface fluxes (Figure F). All the physical parameterizations
interact in some way with the surface physics (land-surface models, and, potentially,
coupled ocean models). The surface physics, while not explicitly producing tendencies of
atmospheric state variables, is responsible for updating the land-state variables. Although
the microphysics schemes do not output tendencies, they do update the atmospheric state

during the simulation.

Direct Interactions of Parameterizations
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Figure F — Interactions between the several physical parameterizations (simplified)
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Chapter 3 — Optimisation of the WRF
model wind simulation: testing of initial

and boundary datasets

This chapter presents the testing of which initial and boundary datasets used to force the
WRF model produce the most accurate wind power flux, wind speed and direction
simulation results. This chapter describes this research in the form of two published
research articles, one for onshore areas and another one for offshore areas. In each of these
articles it is detailed the methodology followed, area under study, initial/boundary datasets
tested and in situ observed data used to compare the simulations driven by each initial and

boundary dataset. Also introductory notes and state of the art are included.
3.1 - Onshore

The article presented below details the research about the testing of which initial and
boundary datasets used to force the WRF model produce the most accurate wind power
flux, wind speed and direction simulation results for onshore Portuguese continental
territory. This article can be consulted in the link:

http://www.sciencedirect.com/science/article/pii/S0306261913009847
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The performance of the WRF mesoscale model in the wind simulation and wind energy estimates was
assessed and evaluated under different initial and boundary forcing conditions. Due to the continuous
evolution and progress in the development of reanalyses datasets, this work aims to compare an older,
yet widely used, reanalysis (the NCEP-R2) with three recently released reanalyses datasets that represent
the new generation of this type of data (ERA-Interim, NASA-MERRA and NCEP-CFSR). Due to its intensive
use in wind energy assessment studies, the NCEP-GFS and NCEP-FNL analysis were also used to drive

f:i‘l’:wds" WRF and its results compared to those of the simulations driven by reanalyses.
Reanalyses Six different WRF simulations were conducted and their results compared to measured wind data col-
Analyses lected at thirteen wind measuring stations located in Portugal in areas of high wind energy potential.

Based on the analysis and results presented in this work, it can be concluded that the new generation rea-
nalyses are able to provide a considerable improvement in wind simulation when compared to the older
reanalyses. Among all the initial and boundary conditions datasets tested here, ERA-Interim reanalysis is
the one that likely provides the most realistic initial and boundary data, providing the best estimates of
the local wind regimes and potential wind energy production. The NCEP-GFS and NCEP-FNL analyses
seem to be the best alternatives to ERA-Interim, showing better results than all the other reanalyses data-
sets here tested, and can therefore be considered as valid alternatives to ERA-Interim, in particular for
cases where reliable forcing data is needed for real-time applications due to its fast availability.
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1. Introduction

Due to the current deterioration of the worldwide environment,
together with the increasing scarcity and high cost of the conven-
tional energy sources (mainly fossil fuels), renewable energies are
currently one of the main areas of research and investment. One of
the fastest growing renewable energy sources has been wind
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power, which is presently one of the main suppliers of electricity
in European countries. Portugal has been one of the leading coun-
tries in terms of installed onshore wind generating power: in 2011,
it ranked 10th worldwide and 5th among European countries in
terms of total wind energy installed capacity [1]. In 2010, Portugal
was able to achieve an 18% quota of wind-derived energy in the to-
tal annual energy consumption, only outranked worldwide by
Denmark in this parameter |2|. The exponential growth of world-
wide installed wind power, mainly over the last decade, together
with the future expansion of the wind energy markets [3] brings
new challenges to the wind power industry, namely in what is
related to the identification of the most promising sites in terms
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of wind energy potential. Although the use of this renewable en-
ergy source has been rapidly increasing worldwide, the lack of reli-
able measured wind data in several areas of the globe is still
hampering the development of new wind energy projects, particu-
larly in developing countries [4].

The wind energetic potential of one given area is traditionally
assessed using locally acquired wind measurements and, in order
to realistically represent the local wind climatology for wind en-
ergy assessment, a minimum of 1 year of measurements needs to
be performed. However, the planning, installation and mainte-
nance of wind measuring masts is an expensive endeavor, and if
the wind measuring campaign reveals a poor wind energetic po-
tential of the selected site, a considerable amount of investment
is irreversibly lost. The need to obtain a preliminary knowledge
of the available wind resource at sites with few or no local mea-
surements becomes, therefore, of paramount importance. Due to
these needs and limitations, alternative and reliable sources of
wind data specifically designed to assess the wind energetic poten-
tial of one given area and/or to accurately forecast the wind consti-
tute, nowadays, a very valuable service. One of the most used
alternative sources of wind data are numerical weather prediction
(NWP) models, capable of deriving wind climatologies at high res-
olution at the regional scale. In the recent past, mesoscale model-
ing using NWP codes has been used in several applications in the
wind energy field: in the long-term wind climatology characteriza-
tion of potential sites, in order to quantify the wind variability and
representativeness of the local wind measurements to reduce
uncertainty in annual energy production estimates; in short-term
wind forecasting for wind farms already in operation, in order to
correctly balance the electrical grid; and in mapping the average
wind resource over large areas, very useful for large scale energy
and/or electrical grid planning, to help promoters identify potential
sites for wind energy exploitation, for greenfield or early-stage pro-
jects [5-13], Despite the promising results obtained until now with
NWP models, the wind simulation (and, particularly, the near-sur-
face wind modeling) is still a major challenge to atmospheric mod-
ellers involved in meteorological research and applications, mainly
due to the strong interaction between these low-altitude atmo-
spheric flows and the local topography.

One of the most critical issues regarding mesoscale NWP mod-
eling is the initial and boundary conditions that are fed into the
model. Typically, for wind energy assessment and wind simulation
studies, initial and boundary data are obtained through reanalysis
datasets, which provide all the atmospheric information needed by
the models to perform their simulations. Reanalysis are gridded
datasets that combine data obtained from global circulation mod-
els (GCM's) with measured data, providing a synthesis of the avail-
able worldwide observations in the context of a physical model
|14]. The first generation of reanalyses comprised three datasets:
the NCEP-R1 [15], produced and released by the National Centres
for Environmental Prediction (NCEP); the European Centre for
Medium-Range Weather Forecasts (ECMWF) ERA-40 reanalysis
[16]; and the Japanese Meteorological Agency JRA-25 reanalysis
[17]. Due to several problems reported for the NCEP-R1, a second
version known as the NCEP-R2 | 18] was released by NCEP in order
to correct the detected problems. NCEP-R2 is still processed up to
the present in near real-time, which is a unique feature among
these first generation reanalyses, considering that ERA-40 was dis-
continued in 2001 and the JRA-25 in 2004. Recently, a new gener-
ation of reanalyses has been produced and released, namely: the
new ECMWF reanalysis (ERA Interim, described in [19]), the NCEP
Climate Forecast System Reanalysis (NCEP-CFSR, described in [20])
and NASA's Modern Era Retrospective Analysis for Research and
Applications (NASA-MERRA, described in [21]). This new genera-
tion of reanalyses is expected to provide a significant progress,
due to advances in operational weather forecasting and also from
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previous reanalyses improvement efforts [22]. However, in meso-
scale wind modeling applied to wind energy potential assessment
it is common to find studies which use two analyses datasets pro-
vided by NCEP: the NCEP Global Forecast System (NCEP-GFS) and
the NCEP Final Analysis (NCEP-FNL). Although these two analyses
datasets differ from the traditional reanalyses, as will be detailed
further on, it was decided to include them in this work due to its
use in the wind power industry.

In summary, NCEP-R2, ERA-Interim, NCEP-CFSR, NASA-MERRA,
NCEP-FNL and NCEP-GFS are currently the only available initial
and boundary conditions datasets that are freely and publicly
available, continue up-to-date and include the geographical area
under scope in this study. Summarized information about these
datasets is shown in Table 1.

The main differences between them can be condensed as fol-
lows: NCEP-R2 has the coarsest horizontal and vertical resolutions
of the six considered datasets, assimilating only a limited amount
of satellite observations; ERA-Interim is the latest global reanalysis
produced in Europe and, in opposition to the other considered rea-
nalyses, they include a four-dimensional variational analysis, 4D-
var |23,24] assimilation method; NCEP-CFSR is the only dataset
that makes use of a coupled atmosphere-ocean-sea ice-land mod-
el and both in ERA-Interim and NCEP-CFSR a variational bias cor-
rection method is employed, which allows a significant
improvement and correction of biases related to satellite radiances.
Although NCEP-R2 and NCEP-CFSR were produced by the same
institution, the last one brought significant improvements to the
traditional NCEP-R2, namely a higher resolution model (actually,
the highest resolution among the reanalyses used in this study)
and increased use of satellite observations in its assimilation pro-
cess. As for the NASA-MERRA reanalysis, the GEOS model (version
5) and data assimilation system are used [25]. Its 3D-Var data
assimilation system includes the implementation of flow-depen-
dent, anisotropic and inhomogeneous background error covari-
ances, described in [26.27]. Another innovation in this product is
the implementation of a nudging technique that allows a smooth
transition from the model states toward the observed state, the
Incremental Analysis Update [25,28]. As for the NCEP-FNL and
NCEP-GFS, which consist in analyses and not reanalyses, the major
differences between them and reanalysis data are: the amount of
observational data assimilated, where the reanalyses datasets typ-
ically consider a higher volume of measured and observed data;
the availability of the data, where the NCEP-FNL and NCEP-GFS
data is available usually within a day (or even in the same day)
of the present date while reanalysis datasets are available only a
few days/months after; the homogeneity of the analyses, where
the advantage of the reanalyses is that the same model physics,
parameterizations, etc., are used for the entire dataset produced,
while the NCEP-FNL and NCEP-GFS data are subject to whatever
the operational configuration is at any given period that can cause
some inconsistencies over time (to see an example of how the
model setup has changed over time, please consult <http://
www.emc,ncep.noaa.gov/gmb/STATS/html/model_changes.html>).
NCEP-FNL and NCEP-GFS share practically all of their characteris-
tics, including the atmospheric model and its configuration. The
main differences between these two analyses are: NCEP-FNL
assimilates a higher amount of measured data than NCEP-GFS,
since it runs 3 h past synoptic time when more observational data
is available; NCEP-GFS, although containing less observation data
assimilated, it has a much finer spatial and vertical resolution
(Table 1).

Considering that this new generation of reanalyses is recent,
only the study performed by Carvalho et al. [6] compared the use
of the reanalyses considered in this work in terms of their use as
initial and boundary data in NWP models for wind simulation.
However, that work was focused on offshore winds alone, and
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Table 1
Main characteristics of the considered datasets.

Dataset Type of dataset Horizontal resolution Vertical levels Time coverage Assimilation system
NCEP-R2 Reanalysis 2.5° latflon 28 1979-Present 3D-Var
ERA-Interim Reanalysis 0.75° lat/lon 60 1979-Present 4D-Var
NCEP-CFSR Reanalysis 0.5° lat/lon 64 1979-Present 3D-Var
MNASA-MERRA Reanalysis 0.5° lat = 2/3 lon 72 1979-Present 3D-Var
MNCEP-FNL Analysis 1° lat/lon 52 1999-Present 3D-Var
MNCEP-GFS Analysis 0.5° latflon 64 2004-Present 3D-Var

included only reanalyses datasets. The authors concluded that the
simulation driven by ERA-Interim was the one that provided the
highest overall accuracy, and also that the new generation reanal-
yses (ERA-Interim and NCEP-CFSR) are able to provide a consider-
able improvement in the ocean wind simulation when compared
to the older reanalyses. Also Menéndez et al. [29] tested the use
of several reanalyses in offshore wind simulation, but mainly using
first generation reanalyses (NCEP-R1, JRA25, ERA-40 and ERA-
Interim), concluding that simulations driven by ERA-Interim are
the ones that present the best accuracy. A few studies were found
that compare these and others sets of reanalyses, although not as
initial and boundary conditions in NWP models but the datasets
themselves [30-32|. These studies were unanimous in reporting
significant improvements in the new generation reanalyses. This
is consistent with the improvement in models, observations, and
data assimilation, since more data (observations, scatterometer
winds and improved microwave sounder) is being included
through new data assimilation methods. In particular for ERA-
Interim, it was suggested that its 4D-var assimilation system is a
major advantage and produces better results when compared to
the other reanalyses that use three-dimensional variational analy-
sis. In particular for wind simulation, Tabata et al. [33] compared
lower tropospheric horizontal winds from measurements and from
global reanalyses over Indonesia, concluding that ERA-Interim
showed the highest correlation coefficient and the lowest standard
deviation when compared to measured winds. Specifically for wind
energy assessment, Liléo and Petrik 34| compared the use of
NCEP-R2, NASA-MERRA and NCEP-CFSR reanalyses for onshore
wind resource assessment by comparing their data to locally
acquired measurements, reaching the conclusion that the higher
spatial and temporal resolutions of the new reanalyses allow a
better representation of the local wind climate, representing a sig-
nificant improvement in wind representation accuracy for energy
production estimates.

In this study, the WRF mesoscale model is used to perform six
simulations of near surface winds, each of them using as initial
and boundary conditions a different dataset (reanalysis: NCEP-
R2, ERA-Interim NCEP-CFSR and NASA-MERRA; analysis: NCEP-
FNL and NCEP-GFS). Simulated winds are compared to the
observed ones measured by 13 wind measuring stations scattered
in Portuguese territory. These wind measuring stations are located
in areas with an expected high wind energy potential, and the
measurement campaigns were conducted specifically to assess
the wind energetic potential of the sites. This study aims to com-
pare the performance of this NWP model in simulating the local
wind characteristics and potential wind energy production esti-
mates, when forced by different initial and boundary conditions.

2. Methodology and data
2.1. Measured wind data
Wind data measured at thirteen wind measuring stations

scattered around Portuguese territory (Fig. 1) was used in this
work. These stations are concentrated in four main areas, where
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Fig. 1. Wind measuring stations locations.

several wind farms are currently in operation or planned to be built
in the near future, It is important to mention that all of the wind
data collected by these stations were measured before any wind
farm was installed, therefore, this wind data is free from interfer-
ences and wake effects from wind turbines. The stations locations
are depicted in Fig. 1, together with the terrain height extracted
from the Shuttle Radar Topography Mission (SRTM) database,
described in Farr et al. [35].

All stations measure the wind speed and direction with a tem-
poral resolution of 10 min and at 60 m above ground level (a.g.l.),
with the exception of stations 6, 7 and 8 that measure the flow
at 80 m a.g.l. This study uses records corresponding to the time
period January 1st to December 31st 2008.

2.2. Model and simulations design

The mesoscale meteorological model Weather Research and
Forecast (WRF, version 3.4.1), a well known and widely used
NWP model developed by the National Centre for Atmospheric Re-
search (NCAR), was chosen to perform the simulations. A detailed
description of the model is available in Skamarock et al. [36]. Infor-
mation regarding the topography, land-water masks, land use/land
cover classification, albedo, etc., was supplied to the WRF model
using the GTOPO30 and the USGS data sets, made available by
the US Geological Survey with a horizontal grid resolution of
0.0083° latitude/longitude. In addition, also daily sea surface tem-
peratures (SST) were supplied to the model, being obtained from
the real-time, global, sea surface temperature analyses database
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from NCEP with a spatial resolution of 0.083¢ in latitude and longi-
tude. The simulation domains followed a two-way nesting strat-
egy. Due to the fact that the different datasets considered here
have different spatial resolutions, it becomes necessary to build
different simulation domains for each dataset (both in number of
nested domains and spatial resolution of each one), in order to
achieve a common size and resolution of the innermost domain.
The main characteristics of the simulation domains for all simula-
tions are presented in Table 2, and the vertical structure of the
model is divided in 27 layers. Fig. 2 depicts the innermost simula-
tion domain.

The complete year of 2008 was simulated, through 12 month-
long independent simulations to avoid model divergence and the
accumulation of truncation errors. Moreover, as suggested by Carv-
alho et al. |5], the grid nudging option of the WRF's Four-Dimen-
sional Data Assimilation (FDDA) system was used in all the
simulations. This grid nudging method is a specific three-dimen-
sional analysis nudging, where the model is nudged towards the
initial and boundary conditions (both in time and space) using a
point by point relaxation term. To avoid possible interferences in
the resolved mesoscale forcing mechanisms that are important to
the boundary layer development [37], no nudging was applied in-
side the planetary boundary layer. A more detailed description of
this technique can be found in [36,38]. WRF's physical configura-
tion for all simulations considered the following schemes: Yonsei
University for the planetary boundary layer, Monin-Obukhov
MMS5 for the surface layer, WRF Single-Moment 6-Class for the
microphysics, Noah land surface model, RRTM scheme for the
long-wave radiation, Dudhia parameterization for the sort-wave
radiation and the Kain-Fritsch scheme for cumulus
parameterization.

Given this, six different simulations were performed, each one
of them considering one of the four forcing datasets mentioned
before. For each one of these simulations, wind speed and direction
hourly time series were extracted at the same locations and
measuring height of the 13 wind measuring stations by performing
a horizontal and vertical bi-linear interpolation between the
closest simulation grid points to the wind measuring sites.

2.3. Statistical and comparative analysis

The following statistical parameters were used to evaluate the
simulations: the root mean squared error (RMSE),

1/2
RMSE = “-J 548 (”;-}2] (1)
where
g = ¢ . gt (2)

is the deviation between the simulated wind speed (¢*'™) and the
respective observed wind speed in the station (0°%), being N the
total number of pairs of simulation/measured records. For the wind
direction, which is a circular and nonlinear variable, { takes a
different expression due to the fact that the absolute deviation of

Table 2
Main characteristics of the domains for all simulations.
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Fig. 2. Innermost simulation domain,

the wind direction cannot exceed 180° in module. For this case, 0
is given by

0 = (Uf""‘ - u?"‘) # [1 - 360/ | 6™ — @t |].
if | 6™ — 62" |> 180° 3)
The bias, defined as

; 1
Bias = NE'," A (4)

makes possible the evaluation of the data systematic errors. A posi-
tive (negative) bias means that the simulations overestimate
(underestimate) the measured values. For the wind direction, a
positive (negative) bias represents a clockwise (anti-clockwise)
deviation. The Standard Deviation of the Error (STDE}, which is use-
ful to evaluate the dispersion of the error, is given by

STDE = a(() = [RMSE? — Bias?] "~ (5)

The STDE removes from the RMSE possible offsets (biases), and it
shows if a given error is mainly due to a kind of offset (more easily
corrected) or due to a more random component of the error. The
correlation coefficients (R) for the wind speed and for the wind
direction were computed to assess the correlation between the
simulations and measured wind. In addition to the abovementioned
statistical analysis, the Weibull probability density function (P.D.F.)

Simulation Number of domains Spatial resolutions (km) Size of each domain (X-Y grid nodes)
D1 D2 D3

NCEP-R2 3 75,15 and 5 60-70 96-111 112-205
ERA-Interim 2 15 and 5 95-110 112-205 -
NCEP-CFSR 2 15 and 5 95-110 112-205 -
NASA-MERRA 2 15 and 5 95-110 112-205 -
NCEP-FNL 2 25 and 5 65-75 112-205 -
NCEP-GFS 2 15 and 5 95-110 112-205 -
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of the wind speed (U) was used to evaluate the simulated wind. The
Weibull distribution is widely used to represent wind speed distri-
butions for wind energy applications, not only due to its greater
flexibility and simplicity but also because it accurately fits to exper-
imental data [39-46|. The Weibull P.D.F. is given by

k /U b=1 ¥
Wy=4 (E) e () ®)

The A (scale parameter) is mainly related to the mean state and
mean value of the wind speed, while k (shape parameter) can be re-
garded as equivalent to the standard deviation. The most probable
value of U (Upp) can be calculated from the first derivative of fol-
lowing equation:

K= TY ¥
Uprnh :A(T) (7}

Finally, the potential wind energy production was estimated com-
puting the power flux for all sites. The wind power flux (W m2)
is a function of the wind speed, given by:

1
Pﬂux =i* P*U3 (8)

where U is the wind speed and p is the air density and the standard
value of 1.225 kg m* was assumed. The mean wind power flux was
computed at all sites for each simulated and measured wind speed
record, adding all records power fluxes and then averaging this sum
by the total number of records.

3. Results and discussion
3.1. Statistical analysis

The RMSE, Bias, STDE and correlation coefficients (R) between
the stations and the wind data derived from the three simulations
are presented in Table 3, considering only the number of simulta-
neous and valid pairs of records between the simulations and the
respective station. Due to the high number of stations used in these
comparisons, only the weighted average values are presented
(average values weighted by the number of pairs of records used).
The best error scores (lower errors and higher correlation coeffi-
cients) are highlighted in bold.

According to Table 3, the WRF simulations that used ERA-Inter-
im reanalysis as initial and boundary conditions show the lowest
overall errors in terms of RMSE, STDE and correlation coefficient,
both for the wind speed and direction. For the Bias, again the sim-
ulation driven with ERA-Interim presents the lowest errors but
now just for the wind direction. For the wind speed, the simulation
driven with the NCEP-GFS analysis has the lowest bias but fol-
lowed closely by the simulations forced with ERA-Interim and
NCEP-FNL. The worst RMSE, STDE and R scores were obtained for
the WRF simulations driven with NCEP-R2 reanalysis, while for
the bias the simulation with the highest errors was the one driven

with NASA-MERRA and NCEP-R2 for the wind speed and NCEP-GFS
driven simulation for the wind direction.

For all simulations, the overall wind speed bias is positive, indi-
cating a tendency to overestimate the wind speed. For the wind
direction, the weighted mean biases were positive for the simula-
tion driven by NCEP-R2 reanalysis and negative for the simulations
driven by the remaining input data. Therefore, NCEP-R2 driven
simulations have a tendency to simulate the wind with a slight
clockwise wind rotation relative to the measured wind, while
ERA-Interim, NCEP-CFSR, NASA-MERRA, NCEP-FNL and NCEP-GFS
simulated the wind direction with an anti-clockwise rotation.
But, considering the magnitude of these obtained biases, the wind
direction rotations are insignificant.

Although not shown in Table 3, all simulations underestimate
the wind speed at two stations (stations 2 and 3) but overestimate
it at all remaining ones, resulting in the weighted mean wind speed
overestimation mentioned above. This fact may be surprising, be-
cause the application of mesoscale models for wind energy assess-
ment studies typically shows wind speed underestimations at
potential sites for installing wind farms (typically mountain
ridges), and not overestimation. Although the aim of this study is
not to analyze in detail the errors of the model but to conclude
which one of these databases provides simulations closest to the
measured wind data, it is worth looking in further detail to
the possible reasons why the simulations tend to overestimate
the wind speed.

Mesoscale errors for near surface winds may have multiple
sources, from discrepancies in the atmospheric modeling at meso-
scale level to incorrect representation of local terrain and rough-
ness heights, leading to a misrepresentation of the local terrain
complexity. Due to the limited resolution of the topography data
supplied to the model, amplified by their own limited resolutive
capacity, mesoscale models tend to smooth the real topography
and its complexity in the simulation mesh. This leads to a two-
pronged effect.

The first effect comes from the fact that this smoothing of the
terrain complexity may have a speed-up effect in the simulated
wind, since a flatter terrain means lower friction between the sur-
face and the atmosphere, inducing higher surface wind speeds. The
study |47] suggests that WRF exhibits a high wind speed bias over
land due to the exclusion of sub-grid orographic drag in the formu-
lation of roughness lengths. By formulating roughness length
including these effects, they were able to significantly reduce the
high wind speed bias in low-level winds. Moreover, this smoothing
of the real topography will produce mountain peaks lower and val-
leys higher than in reality in its simulation mesh. Therefore, the
mesoscale model will have a tendency to overestimate the wind
speed in valleys and underestimate the wind speed in mountain
peaks: the underestimation of the wind speed due to the underes-
timation of the site height is due, on the one hand, by the fact that
places with lower elevation are typically characterized by lower
mean wind speeds. As a consequence, if the model considers the
simulation point lower than it is in reality, the computed wind

Table 3

Statistics of the comparison between observed and simulated wind data averaged for all stations.
Simulation RMSE Bias STDE R

Speed (ms') Direction (?) Speed (ms™') Direction (%) Speed (ms ') Direction () Speed (ms ") Direction ()

NCEP-R2 249 43.77 0.49 0.46 244 43.55 0.69 0.68
ERA-Interim 2.10 35.02 0.34 -0.35 2.02 34.87 0.79 0.78
NCEP-CFSR 219 36.25 0.47 ~0.89 2.07 36.10 0.78 0.76
NASA-MERRA 226 39.39 0.49 -1.21 215 39.19 0.76 0.75
NCEP-FNL 217 36.07 0.31 ~0.87 2.09 35.89 0.77 0.75
NCEP-GFS 2,13 35.57 0.30 -2.14 2.05 3538 0.78 0,75
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speed may be lower than in reality also. On the other hand, typi-
cally mountain areas are characterized by wind speed-up effects
due to the fact that the wind becomes compressed on the windy
side of the mountain, and once the air reaches the ridge it can ex-
pand again as its soars down into the low pressure area on the lee
side of the mountain. If the model considers the site lower than it is
in reality, this speed-up effect will be lower and the simulated
wind speeds will be underestimated [5|. The inverse situation is
seen when the model overestimates the site height. The differences
between the real heights of the 13 stations and its correspondent
heights in WRF's simulation mesh were computed and, since all
of the stations are located in mountain ridges (or points that are
higher than the surrounding areas), WRF considers all stations
with lower heights than in reality. Given this, the wind speed over-
estimation cannot be attributed to an overestimation of the sta-
tions heights. However, a wind speed overestimation effect by
NWP models can arise in sites with high topographic elevations
due to flow detachment phenomena: the flow regime in the
vicinity of an orographic obstacle can be quantified in terms of
the Froude number:

F,=H=«N/U 9)

where H is the site height, N represents the moist Brunt-Vdisild fre-
quency and U the wind speed. When F, < 1, the atmospheric flow
will tend to pass over the orographic obstacle and the aforemen-
tioned situation of wind speed underestimation by the model is
most likely to occur. Oppositely, if F.> 1 there will be a tendency
for the atmospheric flow to be detached and a significant part of
it to be diverted around the orographic obstacle instead of passing
over it. For this case, since the NWP model topography is smoothed
when compared to the real one, the model might not properly rep-
resent this flow detachment and simulate the flow as passing
mainly over the orographic obstacle and not around it. In this case,
an overestimation of the wind speed by the model is more likely to
occur. Considering that the mountainous sites here considered are
relatively low, together with a typical stability condition
(N~ 10 %5 ") and wind speeds in average above 5ms ', it is not
expected that flow detachments can occur often. However, this
can happen in localized areas and/or during particular synoptic/
atmospheric conditions leading to the model to overestimate the
wind speed. An example of these flow detachment phenomena
can be seen in [48].

However, a second effect may occur since this simplification of
the real topography and terrain complexity is not always straight-
forward and linear in terms of its impact in the modeling results,
and may have other implications in the simulation performance.
For example, if one station is located in the vicinity of a higher peak
located North of the station, the real wind at the station will suffer
an orographic blockage and winds coming from North will be slo-
wed down due to the neighbor higher peak. If the mesoscale model
smoothes the topography to a state that the higher peak is much
more smooth and low, this orographic blockage will not be prop-
erly captured by the model and it will overestimate wind speeds
coming from North. If, in that station, the dominant wind direction
is North the model will overestimate the wind speed on the major-
ity of the wind occurrences, and the overall result is an overestima-
tion of the wind speed at that site.

Therefore, and excluding errors that can arise from the misrep-
resentation of the synoptic conditions of the atmosphere, meso-
scale models have limitations in their topography representation
that can induce over or underestimation of the wind speed at
one given site. The factors that can contribute to a wind speed
overestimation are: smoothing of the surrounding topography
and terrain complexity, meaning lower friction between the
surface and the atmosphere, originating faster surface wind
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speeds; overestimation of the site height, contributing to an over-
estimation of the wind speed (not applicable in the present case);
the occurrence of flow detachment situations, contributing to the
wind speed overestimation by the model due to its inability to cap-
ture this phenomena; and smoothing of the surrounding topogra-
phy that can partially or completely misrepresent possible
orographic blockages from certain wind direction sectors. Oppo-
sitely, the factor that can contribute to a wind speed underestima-
tion is the underestimation of the site height, leading to an
underestimation of the wind speed. The interaction and balance
between these factors, together with the contribution of other
sources of error related to the misrepresentation of the atmo-
spheric synoptic conditions, can lead to an over or underestimation
of the wind speed by the model. For example, the wind speed
underestimation induced by the underestimation of the site height
(typical in mountain peaks) can be partially/completely canceled
and even surpassed due to low/high contribution of wind speed
overestimation contributors, such as the terrain complexity
smoothing and/or the misrepresentation of orographic blockages
and flow detachments.

Although it is unrealistic to separate and quantify the contribu-
tion of each one of these factors, an example is depicted in Fig. 3,
where it is clear the topography and terrain complexity smoothing
of WRF's simulation mesh (mountain peaks lower and valleys
higher than in reality), together with the occurrence of orographic
blockage effects. Stations 1 and 2 were chosen as example, due to
the fact that station 1 suffers from orographic blockages in its wind
direction dominant sector (North-Northeast) and WRF overesti-
mates the wind speed at this site, and station 2, located just
10 km away from station 1, does not suffer from orographic block-
ages and WRF underestimates the wind speed.

From Fig. 3 it is possible to see that the real topography induces
an orographic blockage effect of the wind coming from the North-
east sector in station 1, while WRF's topography completely
smoothes the terrain and is not able to depict this feature. There-
fore, in the mesoscale model the wind coming from the dominant
sector is completely free from obstacles and an overestimation of
the real wind speed arises. In other words, even though WRF signif-
icantly underestimates station 1 height, WRF's less complex and
obstacle-free terrain will surpass this effect and induce an overes-
timation of the wind speed at this station. In opposition, in station
2 is not visible any significant orographic obstacle in the North-
Northeast sector and WRF's less complex terrain contributor to
the wind speed overestimation is not enough to surpass WRF's
underestimation of station 2 height, resulting in the wind speed
underestimation by the mesoscale model (typical mountain peak
situation).

Moreover, from an analysis of the model errors in all stations
versus the terrain complexity, quantified in the form of the RIX
factor, there appears to be some correlation between the RIX
values and WREF errors. The ruggedness index, or RIX [49], is de-
fined as the percentage fraction of the terrain within a certain
distance from a specific site which is steeper than some critical
slope, typically considered of 0.3. This index can, therefore, be
used as a site-specific measure of the terrain complexity, and
can give indication of the effects of local topography and rugged-
ness on the accuracy of mesoscale near surface wind simula-
tions. Stations located in more complex terrain (high RIX
values) have a tendency to show higher errors. This is not
wholly surprising, and it is a feature common to almost any type
of model, due to their low mesh resolution that cannot properly
represent terrain-induced circulations. In other words, RIX val-
ues can be seen as crude indications of the terrain oscillations,
with the highest values suggesting a poor characterization by
the coarse mesoscale grid.
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Fig. 3. Overlay of real (SRTM derived) and WRF topography.

3.2. Simulations error dependence on measured wind speed and
direction

In this section, the variation of the simulated wind speed and
direction error with the observed wind speed and direction is as-
sessed. To this end, the measured wind speed and direction were
binned into four categories and the RMSE and Bias computed and
analyzed. Table 4 shows the results for the first comparison, in
which four measured wind speed bins were considered: wind
speeds below 4ms ', between 4 and 8 ms !, between 8 and
12ms 'and above 12 m s~ '. Again, due to the high number of sta-
tions used in these comparisons only the weighted average values
are presented for each wind speed bin.

According to the weighted average results for all stations, the
most striking feature is that all simulations show a better perfor-
mance in the presence of intermediate wind speeds (between 4
and 12 m s ') while for weak and strong wind speeds the simu-
lated wind speed errors are higher, with significant higher errors
when strong wind speeds are observed (both for the RMSE and
Bias). Another remarkable feature is that all simulations tend to
overestimate wind speeds below 8 m s~ and underestimate wind
speeds above this value. There seems to be a somewhat linear var-
iation of the Bias with the measured wind speed: for low wind
speeds the bias tends to be positive and high, gradually diminish-
ing with increasing measured wind speed and for strong wind
speeds the biases are now negative and again high in value,

Among the different simulations, the one driven with ERA-In-
terim shows again the lowest error scores for all the wind speed
bins, being the exception the bias for the second and fourth wind
speed bins. Table 5 shows the same comparison but now for the
simulated wind direction.

Table 5 clearly shows that, for all simulations, the wind direc-
tion RMSE rapidly decreases with increasing wind speed. The
opposite tendency is seen for the Bias, but for the latter the differ-
ences in its scores among the wind speed bins are negligible, when

compared to the RMSE differences among the wind speed bins.
This fact is to be expected, since in the presence of low wind speeds
the wind direction measurement/simulation is subjected to higher
errors. Moreover, from the bias values it is possible to see that the
errors in wind direction are mainly on the same side with respect
to the real wind vector for intense wind speeds, while for low wind
speeds they are distributed more uniformly on both sides. Again,
ERA-Interim driven simulation is the one with the best results,
with the exceptions of the Bias for wind speeds above 8 ms™'.
Table 6 (7) depicts the second comparison, in which the simulated
wind speed (direction) error variation with the measured wind
direction is assessed. Four wind direction bins were considered:
North (angles between 315 and 45°), East (angles between 45°
and 135°), South (angles between 135 and 225°) and West (angles
between 225° and 315°).

Table 6 shows that the wind speed errors do not show any par-
ticular dependence with the measured wind direction. Table 7
shows a remarkable issue: the South sector shows the highest
errors when compared to the remaining ones, which is particularly
visible in the RMSE scores. This can be related to the fact thatin the
Atlantic coast of the Iberian Peninsula southerly winds are usually
associated to a very unstable atmosphere with a weak synoptic
forcing, originating very changeable winds that mesoscale models
are not able to accurately detect, mainly due to its limited
resolutive capacity [50].

3.3. Weibull P.D.F. comparison and AEP estimates

The Weibull P.D.F.’s of the measured and simulated wind data
are analyzed and depicted in Fig. 4. Only 2 stations are shown,
due to the fact that all the Weibull P.D.F's are similar for all the sta-
tions. They only differ if the model under or overestimates the
wind speed. Therefore, one example of each is shown in Fig. 4 (sta-
tions 1 and 2).

Table 4

Simulated wind speed RMSE and Bias per measured wind speed bin averaged [or all stations,
Simulation <4ms’ 4-8ms ' 8-12ms! >12ms™!

RMSE (ms ') Bias (ms ') RMSE (ms ') Bias (ms ') RMSE (ms ') Bias (ms ') RMSE (ms ') Bias (ms ')

NCEP-R2 2.72 1.61 2.29 0.52 234 -0.27 3.55 -2.07
ERA-Interim 212 0.93 2.00 0.41 2.01 -0.03 3.01 -1.77
NCEP-CFSR 224 1.07 2.09 0.54 2.07 0.11 3.02 -1.69
NASA-MERRA 240 1.26 2.14 0.53 2.08 0.05 ERD -1.83
NCEP-FNL 222 1.01 2.06 0.36 2.06 -0.14 3.12 ~1.80
NCEP-GFS 2.13 0.94 2.04 0.35 203 -0.08 3.03 -1.76
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Table 5
Simulated wind direction RMSE and Bias per measured wind speed bin averaged for all stations,
Simulation <4ms ' 4-8ms ! 8-12ms ' >12ms !
RMSE (7) Bias () RMSE (°) Bias (%) RMSE (°) Bias (*) RMSE (%) Bias (°)
NCEP-R2 69.03 0.83 37.86 .21 19.10 -1.09 16.20 -2.68
ERA-Interim 60.02 -0.12 26.72 0.31 14.51 ~1.54 13.64 -3.49
NCEP-CFSR 62.28 0.39 27.29 0.60 15.29 -2.31 14.17 4,00
NASA-MERRA 65.26 0.71 31.52 -1.17 16.14 -2.71 15.03 ~3.76
MNCEP-FNL 61.61 0.22 27.75 -0.76 14.88 -1.74 13.71 -3.7
NCEP-GFS 6G0.65 113 26.95 -2.12 15.09 ~-2.70 13.88 -4,37
Table 6
Simulated wind speed RMSE and Bias per measured wind direction bin averaged for all stations.
Simulation North East South West
RMSE (ms ') Bias (ms ') RMSE (ms ') Bias (ms ') RMSE (ms ') Bias (ms ) RMSE (ms ") Bias (ms ")
NCEP-R2 233 0.38 2,78 0.69 2.62 0.26 241 0.67
ERA-Interim 1.98 0.28 2.46 0.54 2.10 0.29 198 032
NCEP-CFSR 2.06 0.42 2,51 0.61 2.26 0.51 2.06 043
NASA-MERRA 212 0.51 2.60 0.51 2.3 0.34 2.16 0.54
NCEP-FNL 201 0.13 2,59 053 221 053 2.02 0.31
NCEP-GFS 1.99 0.19 248 0.50 2.20 0.46 2.00 0.24
Table 7
Simulated wind direction RMSE and Bias per measured wind direction bin averaged for all stations.
Simulation North East South West
RMSE () Bias (°) RMSE () Bias (7) RMSE () Bias (7) RMSE (°) Bias (°)
NCEP-R2 36.35 -1.81 45.59 -3.80 57.55 3.08 41,70 5.68
ERA-Interim 29.50 -0.27 37.82 -3.58 43.87 ~0.14 34.33 1.66
NCEP-CFSR 31.19 -1.10 39.97 —4.66 44.80 0.10 34.81 1.54
NASA-MERRA 35.35 -4.21 44.70 -2.98 46.12 4.17 35.28 1.85
NCEP-FNL 3212 -0.59 40.10 -2.40 4148 -0.58 34.27 -0.47
NCEP-GFS 30.53 -1.84 39.48 -5.31 42.50 -1.56 3424 ~0.66

Fig. 4 shows that the simulations driven with ERA-Interim,
NCEP-FNL and NCEP-GFS are the ones with a Weibull P.D.F. closer
to the ones derived from measured data, and this was seen for all
stations. This fact was expected, since the simulations driven with
these datasets were the ones with the lowest biases scores for the
wind speed. Because Weibull P.D.F.'s are merely cumulative and do
not take into account the temporal simultaneity of the measured
and simulated records, the simulations with lower errors related
to the mean state of the wind speed tend to be the best candidate
to show the Weibull P.D.F curve closest to the observed one. The
worst P.D.F's were obtained with NCEP-R2 reanalysis. In all sta-
tions where the simulations overestimated the wind speed (here
represented by station 1), it is visible a shifting of the simulated
P.D.F.'s to the right side of the wind speed axis (relatively to the ob-
served P.D.F.). This shifting means that low wind speed frequencies
are underestimated by the model while strong wind speed fre-
quencies are overestimated by the simulations. This conjugation
of the overestimation of strong winds frequencies and the underes-
timation of low winds frequencies originates the overall wind
speed overestimation tendency detected. Oppositely, in the sta-
tions where the model underestimated the wind speed (station
2), the model underestimates the frequency of strong wind speeds
and overestimates the frequency of intermediate wind speeds.

Table 8 depicts the Weibull P.D.F.'s A and k parameters, most
probable wind speed (Upqp), mean wind speed (U,,) and wind
energy estimates (Py,,) estimates percentual deviations when com-
pared to the observed data.

Table 8 shows that NCEP-GFS simulations are the ones with the
lowest errors in all the parameters, with the exception of the
power flux where NCEP-FNL driven simulation shows the best
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estimates. In fact, ERA-Interim, NCEP-FNL and NCEP-GFS driven
simulations show very similar results. The worst results are
obtained with NCEP-R2 driven simulations, except for the power
flux estimates where the simulation driven with NCEP-CFSR
reanalysis is the one with the highest deviation. Also visible is that
all simulations depict the mean and the most probable wind speed
higher than the measured values, in particular for the latter. Due to
this fact, the wind energy fluxes estimates deviations show an
overestimation of the expected energy output.

From the results shown in this and the previous sections, it be-
comes clear that the new generation reanalyses (ERA-Interim,
NCEP-CFSR and NASA-MERRA) brought significant improvement,
providing simulations with overall lower errors when compared
to simulations driven with NCEP-R2 reanalysis both in terms of
wind speed and direction. This improvement is more pronounced
in what is related to wind temporal variability accuracy. This is
consistent with the improvement in models, observations, and
data assimilation, since more data (observations, satellites and im-
proved microwave sounders) is being included through new data
assimilation methods. Among these two new generation reanaly-
ses, it is clear that ERA-Interim is the one with the best perfor-
mance when compared to measured winds, using the current
mesoscale model and configuration. One of ERA-Interim character-
istics that can be related to these results is that, in opposition to
the other considered reanalyses that make use of three-dimen-
sional variational analyses, the european database includes a
four-dimensional variational analysis assimilation method. This
feature has been reported as a major advantage, producing better
results when compared to the other reanalyses that use three-
dimensional variational analysis. Furthermore, the higher errors
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Fig. 4. Weibull P.D.F. curves for stations 1 and 2.
Table 8

Weibull P.D.F.'s parameters, mean and most probable wind speed together with wind
energy flux deviations averaged for all stations.

Simulation Al%) k(%) U (%) Upron (%) Prx (%)
NCEP-R2 7.8 6.1 7.8 13.7 15.9
ERA-Interim 53 1.4 53 74 14.5
NCEP-CFSR 7.5 3.1 7.4 11.0 194
NASA-MERRA 78 5:1 78 12.5 182
NCEP-FNL 4.9 14 4.8 7.0 143
NCEP-GF5 4.8 0.7 4.7 6.6 147

of NCEP-R2 driven simulations, particularly visible for the tempo-
ral variability errors, are also attributable to the poorer resolution
of reanalysis, which will introduce these temporal variability lags
when the NCEP-R2 data is interpolated to the model simulation
grid points.

The simulations driven with analysis datasets (and particularly
the one driven by NCEP-GFS) showed the best results in what
concerns wind speed mean state errors (which include the Bias),
Weibull wind speed probability distribution and wind energy
fluxes estimates accuracy. Even for the other error metrics here
employed, they were the simulations with the best results after
ERA-Interim driven simulation. This was not expected, since tradi-
tionally reanalyses are considered as the best representations of
the local meteorological parameters due to the fact that they
assimilate a higher amount of observed data. Therefore, it would
be expected that the simulations driven with the remaining reanal-
yses would provide better results than the ones driven by analyses.
However, there are some relevant differences between reanalyses
and analyses, mainly related to differences in the methodologies
and techniques employed in their building processes, that can ex-
plain this good performance: the analyses use the most up-to-date
operational model (which include the most recent improvements

and updates), observed data assimilation methods and schemes,
which might not have been used when the reanalyses were pro-
duced. Due to the fact that the reanalyses are an attempt to ensure
continuous datasets (that is, changes in the assimilation schemes
and/or operational model configuration configurations are slow
and conservative in approach to minimize discontinuities which
might cause unrealistic time trends), the continuous improve-
ments and updates in the operational model and observed data
assimilation schemes are not necessarily included in the reanaly-
ses. Moreover, the spatial resolution of the models used for reanal-
yses may be different than the underlying model that generates the
analyses product (GFS model). Finally, the analyses, while obvi-
ously not using as many observations as the reanalyses products,
use an assimilation model that runs at much higher resolution than
the ones used in the reanalyses. Therefore, if the area under study
is rich in terms of operational observational data (as is the present
case), the potential added benefit for using reanalyses may not be
apparent.

4. Conclusions

This study aimed to evaluate and compare the performance of
the WRF mesoscale model near surface wind simulation and wind
energy estimates when forced by different initial and boundary
conditions. Six datasets were used to drive wind simulations for
Portuguese territory, and its results were compared with measured
wind data collected from thirteen wind measuring stations
scattered along Portuguese mainland. The objective was to deter-
mine which one of these forcing datasets produces more accurate
wind simulations and wind energy estimates at typical hub height
levels. The main conclusions to be drawn from this study can be
summarized as follows:

- The new generation reanalyses ERA-Interim, NASA-MERRA and
NCEP-CFSR were able to offer improvements and progress in
terms of reanalyses, providing simulations with lower errors
when compared to simulations driven by NCEP-R2 reanalysis,
both in terms of wind speed and direction, but mainly in terms
of RMSE, STDE and correlation coefficients (which translate the
simulations accuracy in terms of representing the wind tempo-
ral variability). The simulations which used ERA-Interim were
the ones with the best results, except for the wind speed mean
state errors, where the simulations driven by NCEP-FNL and
NCEP-GFS analyses yielded the best scores. However, even for
these error metrics the simulation driven with ERA-Interim fol-
lowed very closely the NCEP-FNL and NCEP-GFS performance.

- For the wind speed, all simulations showed better results in
simulating intermediate wind speeds (between 4 and
12ms '), while for weak and strong wind speeds the model
errors are somewhat higher. Moreover, all simulations show a
tendency to globally overestimate the wind intensity. This over-
estimation tendency is a result of smoothing and over-simplifi-
cation of the terrain characteristics by the mesoscale model.
When analyzing this issue per wind speed bin all simulations
tend to overestimate wind speeds below 8 m s~ and underesti-
mate wind speeds above this value. There seems to be a some-
what linear variation of the Bias with the measured wind speed:
for low wind speeds the bias tends to be positive and high, grad-
ually diminishing with increasing measured wind speed and for
strong wind speeds the biases are now negative and again high
in value.

- For the wind direction, NCEP-R2 driven simulations showed a
tendency to simulate the wind with a slight clockwise rotation
while the remaining simulations showed the opposite, with a
tendency to simulate the wind with a slight anti-clockwise
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rotation. However, the magnitudes of these rotations are not
significant. Furthermore, in the presence of low wind speeds
the errors associated to the wind direction are clearly higher,
and the errors rapidly decrease when the measured wind speed
becomes higher.

- In terms of wind energy estimates, the NCEP-FNL and NCEP-GFS
driven simulations were the ones with the wind speed distribu-
tions and wind energy fluxes estimates closest to the ones
obtained with measured wind data. Although the analyses-dri-
ven simulations showed the lowest errors for these metrics,
ERA-Interim driven simulation showed results very similar to
the ones obtained with NCEP-FNL and NCEP-GFS.

The results presented in this study suggest that the choice of the
initial and boundary data supplied to the model constitute a signif-
icant error source for the WRF model wind simulation. Due to the
continuous progress in the models, measurements and data assim-
ilation used in the reanalyses, the new generation datasets are able
to provide a considerable improvement in the mesoscale wind sim-
ulation when compared to the older sets. The higher spatial resolu-
tions, amount of measured and observed data assimilated together
with the improvements of data assimilation and correction tech-
niques of the new generation reanalyses allow a more accurate
and realistic representation of the local wind regime. Based on
the analysis and results presented in this work, ERA-Interim
reanalysis is the one that likely provides the most realistic initial
and boundary data, which will produce wind and wind energy esti-
mates closer to real winds. Although the simulations driven with
analyses datasets showed the lowest wind energy estimates errors,
ERA-Interim driven simulation showed very similar error values
and for the wind temporal variability it was the dataset that clearly
provided the best results. Therefore, ERA-Interim should be consid-
ered as the best choice in terms of initial and boundary data for
mesoscale wind simulations. Nevertheless, the analyses products
NCEP-FNL and NCEP-GFS seem to be the best alternatives to ERA-
Interim, showing better results than all the other reanalyses
datasets here tested.
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3.2 - Offshore

This article details the research about the testing of which initial and boundary datasets
used to force the WRF model produce the most accurate wind power flux, wind speed and

direction simulation results for offshore areas.

Until the recent past Portugal did not have any sources of in situ offshore measured winds,
due to the inexistence of buoys that measure the wind speed and direction moored offshore
the Portuguese continental coast. In 2009-2010 three buoys equipped with wind measuring
instruments were moored offshore the Portuguese continental coast, one near Leixdes
harbour and two located in the Nazaré Canyon. However, at the time that this research was
performed these buoys did not have one complete year of measurements available (due to
several intermittences in their operation) and were not, therefore, considered in this study
as sources of in situ offshore measured wind data. Due to this lack of offshore measured
wind data along the Portuguese continental coast, and as detailed in the article, offshore
wind measurements collected by buoys equipped with wind measuring instruments moored
offshore the Galician coast and the Gulf of Cadiz (the nearest areas to the Portuguese
continental coast) were used as offshore wind measurements. This article is available in the
following link:

http://www.sciencedirect.com/science/article/pii/S0306261914008216

39


http://www.sciencedirect.com/science/article/pii/S0306261914008216

40



Applied Energy 134 (2014) 57-64
Contents lists available at ScienceDirect

Applied Energy

¥

ELSEVIER journal homepage: www.elsevier.com/locate/apenergy

Offshore wind energy resource simulation forced by different @cﬂ,ssm
reanalyses: Comparison with observed data in the Iberian Peninsula

d,% d - . | . o7 i
D. Carvalho®*, A. Rocha“, M. Gomez-Gesteira ’, C. Silva Santos “*
*CESAM - Department of Physics, University of Aveiro, Campus Universitdrio de Santiago, 3810-193 Aveiro, Portugal
Y Grupo de Fisica de la Atmdsfera v del Océano, Facultad de Ciencias, Universidad de Vigo, 32004 Ourense, Spain
© Instituto Superior de Engenharia do Porto, Rua Dr. Anténio Bernardino de Almeida 341, 4200-072 Porto, Portugal
4 MEGAJOULE Inovagdo, Rua Eng. Frederico Ulrich 2650, 4470-605 Moreira da Maia, Portugal

HIGHLIGHTS

« Simulated offshore winds were forced by different reanalysis and analysis.

« New generation reanalysis are able to improve offshore wind simulation.

« ERA-Interim driven simulation showed the lowest wind temporal variability errors.
« NCEP-R2 provide the most accurate offshore wind energy production estimates.

« NCEP-FNL and NCEP-GFS can be seen as valid alternatives to traditional reanalyses.

ARTICLE INFO ABSTRACT
Article history: Due to the increasing interest in the prospection of potential sites for the installation of offshore wind
Received 12 February 2014 farms, it becomes important to extend the tests presented on Carvalho et al. (2014) to offshore areas.
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For that, the WRF model was used to conduct ocean surface wind simulations forced by different initial
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and boundary conditions (NCEP-R2, ERA-Interim, NCEP-CFSR, NASA-MERRA, NCEP-FNL and NCEP-GFS)
aiming to assess which one of these datasets provides the most accurate ocean surface wind simulation
and offshore wind energy estimates. Six near surface wind simulations were performed, each one of them
NCEP-R2 forced by a different initial and boundary dataset. Results were evaluated using data collected at five
ERA-Interim buoys that measure the wind in the Iberian Peninsula region (Galician coast and Gulf of Cadiz).
NCEP-CFSR The results show that the simulation driven with ERA-Interim reanalysis provided the lowest errors in
NCEP-FNL terms of offshore wind temporal variability. NCEP-R2 driven simulation showed the lowest offshore wind
GFS speed bias, mean wind speed and offshore wind energy production estimates. However, it was the one
Offshore winds with the highest errors related to the wind temporal variability. The simulations driven with the
NCEP-FNL and NCEP-GFS analyses products also showed interesting results, better than the NCEP-CFSR
and NASA-MERRA reanalyses.

Based on the results presented in this work and in Carvalho et al. (2014), ERA-Interim reanalysis likely
provide the most accurate initial and boundary data to force near-surface wind simulations for the
offshore and onshore areas. However, for offshore sites the NCEP-R2 reanalysis seem to provide the most
accurate estimation of the potential wind energy production, fact that is of great importance for the wind
energy industry. Furthermore, the NCEP-GFS and NCEP-FNL analyses can be considered as valid
alternatives to ERA-Interim and NCEP-R2, in particular for cases where reliable forcing data is needed
for real-time applications due to their fast availability.
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Table 1
Main characteristics of the several reanalyses and analyses used to force the WRF model.
Dataset Type of dataset Horizontal resolution Vertical levels Vintage
NCEP-R2 Reanalysis 2.57 latflon 28 1979-Present
ERA-Interim Reanalysis 0.75° latflon 60 1979-Present
NCEP-CFSR Reanalysis 0.5 lat/lon G4 1979-Present
NASA-MERRA Reanalysis 0.57 lat - 2/3 lon 72 1979-Present
NCEP-FNL Analysis 1¢ lat/lon 52 1999-Present
NCEP-GFS Analysis 0.5° latf{lon 64 2004-Present
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Fig. 1. The study area and the simulation domain with the considered buoys from Puertos del Estado Spanish Agency.

Table 2
Main characteristics of the considered buoys from Puertos del Estado Spanish Agency.

Buoy Latitude Longitude Distance to the coast
Cabo de Pefias 43°45'N 6°9'36"W ~20km
Estaca de Bares 44°3'54"N 7e37'5"W ~32 km
Villano-Sisargas 43°30"N 9°12'36"W ~30 km
Cabo Silleiro 42°7°48"N 9°23"24"W ~40 km
Golfo de Cadiz 36°28'37"N B6°57'47"W ~55 km

extrapolate their wind data to 10 m a.s.l. Real winds depend on the
atmospheric stability, and to extrapolate winds taking into account
this atmospheric stability methods such as the Monin-Obukhov
theory [33] should be used. To apply this method information
about the friction velocity, temperature and surface heat fluxes
are necessary. Since this data is not available from the buoys con-
sidered in this work, methods that assume a neutrally stable atmo-
sphere (that is, do not consider the atmospheric stability) have to
be considered, being a widely used one the method described in
[34]. However, this algorithm also requires information that is
not collected by the buoys here considered, such as air and sea sur-
face temperatures, pressure and relative humidity. Therefore, in
the absence of such data, the logarithmic wind profile expression
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(1) will be here used as alternative method to extrapolate the mea-
sured winds from 3 to 10 m as.l.:

Uz = (Uz,) *In (z%)/]n (%_) )

U, refers to the wind speed at a height z, z,, is the measurement
height and Uz, is the wind speed at the measurement height. z,
is the local roughness length, and [35] suggest the value of
1.52 % 10* m as a typical one for the ocean surface. Using the log-
arithmic wind profile, that extrapolates the wind considering an
atmosphere with neutral stability, it becomes pertinent to analyze
what are the possible differences between the neutrally stable
winds obtained from this law and real ones, which depend on the
atmospheric stability. Several studies [36-39] focused on these dif-
ferences between real (stability-dependant) and neutrally stable
winds, concluding that these differences are usually low over the
global ocean. According to these studies, neutrally stable winds
are slightly than real winds (about 0.2 m s~ ') in terms of monthly
winds, but can reach a maximum of 0.5 ms ' in terms of hourly
winds, due to the fact that over most of the global ocean the plan-
etary boundary layer is slightly unstable. Besides this fact, the
extrapolation here performed is made for a relatively low height
difference (3-10m) over an ocean surface that typically shows
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Table 3
Statistics of the comparison between observed and simulated wind data.
Station Simulation RMSE Bias STDE [
Speed (ms')  Direction (") Speed (ms ')  Direction (°) Speed (ms ')  Direction (*) Speed (-)  Direction (=)

Cabo de Pefas NCEP-R2 253 54.66 0.63 9.65 245 53.80 0.76 0.76
ERA-Interim 214 4995 0.69 7.15 2.03 49.44 0.84 0.81
NCEP-CFSR 227 51.49 0.75 453 215 51.29 0.83 0.78
NASA-MERRA 239 53.26 0.90 3.00 221 53.18 0.81 0.78
NCEP-FNL 224 50.04 0.82 8.14 2.09 49.37 0.83 0.80
NCEP-GFS 2.24 5017 0.73 7.1 212 49.66 0.83 0.80

Estaca de Bares NCEP-R2 228 39.32 -0.05 332 2.28 39.18 0.81 0.86
ERA-Interim 1.67 3094 0.25 -2.02 1.65 30.87 0.91 0.89
NCEP-CFSR 1.70 31.69 0.29 -2.34 1.67 31.61 0.90 0.89
NASA-MERRA 1,76 34.64 0.16 -1.99 1.75 34.58 0.89 0.83
NCEP-FNL 1.70 30.72 0.24 -2.02 1.68 30.66 0.90 0.90
NCEP-GFS 1.73 31.50 0.30 ~2.44 1.70 31.41 0.90 0.88

Villano-Sisargas ~ NCEP-R2 23 41,95 0.30 5.01 229 41.65 0.82 0.83
ERA-Interim 1.73 32.67 0.57 283 1.64 32.55 0.91 091
NCEP-CFSR 1.84 33.93 0.65 414 1.72 33.68 0.90 0.89
NASA-MERRA 1.90 36.13 0.67 4.28 1.78 35.87 0.89 0.89
NCEP-FNL 1.79 32.79 0.59 3.66 1.69 32,58 0.90 0.90
NCEP-GFS 1.80 3347 0.66 3.67 1.68 33.27 091 0.90

Cabo Silleiro NCEP-R2 252 49,97 0.32 4.69 2,50 49,75 0.74 0.69
ERA-Interim 1.84 41.79 0.49 4.48 1.77 41.55 0.88 0.72
NCEP-CFSR 1.87 4295 0.62 5.92 1.76 42.54 0.88 0.70
NASA-MERRA 1.91 43.17 0.69 2.82 1.79 43.08 0.87 0.75
NCEP-FNL 1.91 44.80 0.55 5.69 1.83 4443 0.87 0.69
NCEP-GFS 1.85 42,67 0.54 521 1.77 42.35 0.88 071

Golfo de Cadiz NCEP-R2 2.52 48.62 0.51 7.52 2.46 48.03 0.70 0.77
ERA-Interim 1.87 39.07 0.41 4.64 1.83 38.79 0.86 0.84
NCEP-CFSR 203 37.73 0.66 6.27 1.92 37.20 0.85 0.85
NASA-MERRA 2,10 42,08 0.56 0.69 203 42.07 0.83 0.70
NCEP-FNL 1.87 37.48 0.45 449 1.81 37.21 0.86 0.86
NCEP-GFS 1.88 3594 0.57 468 1.79 35.63 0.87 0.86

Weighted mean NCEP-R2 243 46.74 0,34 6.01 2.40 46.33 0.76 0.78
ERA-Interim 1.85 38.59 0.48 341 178 38.36 088 083
NCEP-CFSR 1.94 39.22 0.60 381 1.84 38.91 0.87 0.83
NASA-MERRA ~ 2.01 41.57 0.59 1.80 1.91 4147 0.86 0.79
NCEP-FNL 1.89 38.83 0.53 3.96 1.81 38.53 0.87 083
NCEP-GFS 1.89 38.40 0.56 3.66 1.80 38,12 0.88 0,83

low roughness values. Considering all these factors, it is expected
that the difference between measured and extrapolated winds is
negligible. Additionally, by considering a whole year of observed
data, it can be assumed that the average atmospheric stability will
be close to neutral, in particular for onshore areas.

Details about the numerical mesoscale model used in this work
(the WRF model), together with a full description regarding the
simulations and their configurations can be found in [1]. Also in
that work is available a full description of the statistical metrics
employed in the simulated wind data evaluation. It is important
to highlight that, both in this work and in |1}, the computation of
the wind power flux was performed considering only the wind
speed records comprised between 3.5 and 25 ms ', in accordance
with the typical wind turbines cut-in and cut-off speeds.

3. Results and discussion
3.1. Statistical analysis

In this section, the statistical metrics Root Mean Square Error
(RMSE), Bias, Standard Deviation of the Error (STDE) and the corre-
lation coefficients for the wind speed and direction between mod-
elled and observed data are presented in Table 3. The lowest error
scores in the weighted mean values are underlined for guidance.

For the wind speed, ERA-Interim driven simulation is the one
closest to the measurements in terms of RMSE, STDE and R
(NCEP-GFS shows the same correlation coefficient for the wind

speed). The lowest Bias is obtained with NCEP-R2 reanalysis,
although this simulation shows the highest RMSE and STDE
together with the worst correlation coefficients. For the wind
direction, NCEP-GFS driven simulation shows the lowest RMSE
and STDE, but closely followed by ERA-Interim driven simulation.
The lowest bias for the wind direction is obtained with NASA-
MERRA reanalysis. The worse overall results (both for the wind
speed and direction) are seen for the NCEP-R2 driven simulation,
with the aforementioned exception of the wind speed Bias. Due
to its poorer horizontal resolution, when NCEP-R2 data are interpo-
lated to the model simulation grid points some phase lags can be
introduced affecting its temporal variability accuracy. In opposi-
tion, for the Bias the NCEP-R2 driven simulation was the one with
the lowest error scores for the wind speed, but with the highest
bias for the wind direction.

The wind speed and direction biases are positive for all simula-
tions, indicating a tendency for the model to overestimate the wind
speed and simulate the wind with a slight clockwise wind rotation
relative to the measured wind, for all of the considered input data.
This overestimation of the wind speed for offshore sites might be
explained by the fact the WRF model does not include an ocean
model, considering the ocean as a constant flat surface, while the
real ocean has higher and variable roughness lengths as a conse-
quence of variations in the ocean surface height (tides, swells,
etc.). Therefore, the lower roughness lengths simulated by the
model over the ocean will originate higher winds, due to the lower
friction between atmosphere and ocean surface.
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Fig. 2. Weibull distribution PDF curves for all buoys.

The worst results are observed for Cabo de Peinas buoy, mainly
in terms of RMSE. The Cape of Peiias is located close to a mountain
range with very complex topography, where the model is not able
to accurately represent terrain-induced circulations due to its lim-
ited resolution. Moreover, this buoy is the one closest to the coast
and land-sea circulations might not be properly solved by the
model. Following Cabo de Penias, also Golfo de Cadiz buoy shows
higher errors when compared to the remaining sites. Golfo de
Cadiz buoy is located in a gulf with very complex coastal topogra-
phy that favors topography-induced atmospheric flows, making
this site more subject to model errors due to its limited resolution.
More details regarding these issues can be found in [9].

Comparing these statistical error scores with the ones for
onshore sites presented in |1], the model shows slightly lower
errors for offshore sites mainly in the wind speed RMSE, STDE

44

and correlation coefficients both for the wind speed and direction.
Since in ocean areas these terrain topography/complexity model
limitations are attenuated, the model is able to show lower errors.

3.2. Weibull PDF comparison

In this section, the Weibull PDF's for all the buoys considering
simulated and measured winds are depicted in Fig. 2.

According to Fig. 2, there are not significant differences among
the several simulated PDF's, with the exception of NCEP-R2. For Vil-
lano-Sisargas, Estaca de Bares and Cabo Silleiro buoys, all the sim-
ulated PDF’s are close to the measured ones, in particular for Bares.
For Peiias and Cadiz the results are somewhat worse, in similarity to
what was seen in the results presented in Table 1. These simulated
PDF's also show the tendency for the model to overestimate the
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Table 4
Weibull PDF's parameters, mean and most probable wind speed together with wind energy flux deviations.

Buoy Simulation A(ms ')  Emor(%) k(=) Ermor(%) U,(ms ') Error(%) Upw(ms ') Error (%) Pus(Ws')  Error (%)

Cabo de Pefias Buoy 6.76 - 1.74 - 6.03 - 4.14 - 404 -
NCEP-R2 7.51 1.1 2.00 14.7 6.65 103 531 28.1 427 5.6
ERA-Interim 7.59 12.2 1.97 13.2 6.71 1.3 5.30 279 456 129
NCEP-CFSR 7.65 13.0 1.92 10.1 6.77 12.3 5.21 257 482 193
MNASA-MERRA 7.82 15.6 1.98 13.5 6.93 149 5.48 322 488 209
NCEP-FNL 7.73 14.3 201 155 6.84 134 5.50 326 460 13.9
NCEP-GFS 7.63 12.8 1.93 10.8 6.75 120 522 26.1 475 17.5

Estaca de Bares Buoy 870 - 222 - 7.74 - 6.65 - 551 -
NCEP-R2 8.67 ~0.3 217 -20 7.68 -0.8 6.54 -1.7 554 0.5
ERA-Interim 9.01 3.5 2,18 =19 7.98 3 G6.80 22 G624 13.4
NCEP-CFSR 9.06 4.1 223 03 8.03 3.7 6,94 44 616 11.9
NASA-MERRA 892 24 217 20 7.90 20 6,72 1.1 610 10,8
NCEP-FNL 9.01 3.5 227 24 797 3.0 6.98 5.0 593 7.6
NCEP-GFS 9.07 4.2 224 1.0 8.03 3.8 6.97 4.8 617 12.1

Villano-Sisargas  Buoy 843 - 205 - 7.49 - 6.08 - 556 -
NCEP-R2 8.79 43 220 7.4 7.78 3.8 6.67 9.8 574 34
ERA-Interim 9.09 7.8 2,15 50 8.05 7.5 6.80 118 651 17.2
NCEP-CFSR 9.18 89 218 6.4 8.14 85 6.92 139 660 18.8
NASA-MERRA ~ 9.20 9.1 218 6.7 8.16 8.8 6.95 144 656 18.1
NCEP-FNL 9.1 8.1 219 6.7 8.08 7.8 6.89 134 641 154
NCEP-GFS 9.8 8.9 2,15 5.2 8.15 87 G.87 131 665 19.7

Cabo Silleiro Buoy 7.16 - 1.88 - 6.35 - 477 - 421 -
NCEP-R2 7.53 5.2 2.06 10,1 6.66 4.9 5.46 14.5 411 23
ERA-Interim 7.72 7.8 1.96 42 6.84 24 535 12.2 479 13.8
NCEP-CFSR 7.86 9.8 2.00 6.4 6.96 9.6 5.54 16.2 486 155
NASA-MERRA  7.94 10.9 2.06 9.6 7.03 10.7 5.74 204 473 124
NCEP-FNL 7.78 8.7 2,04 85 6.89 85 5.58 17.1 457 8.6
NCEP-GFS 777 85 1.96 4.4 6.88 83 5.39 13.0 486 15.5

Golfo de Cadiz Buoy 7.21 - 2,00 - 6.39 - 5.10 - 384 -
NCEP-R2 7.78 79 249 243 6.90 7.9 6.32 24.0 361 -59
ERA-Interim 7.68 6.6 2.00 0.2 6.80 6.4 5.44 6.8 452 17.9
NCEP-CFSR 7.96 10.4 2.04 29 7.05 10.3 5.72 123 481 25.5
NASA-MERRA  7.84 8.7 2,02 1.1 6.94 87 5.59 9.7 474 234
NCEP-FNL 7.72 7.2 211 53 6.83 6.9 5.69 11.6 430 12.0
NCEP-GFS 7.87 9.1 2.04 21 6.96 8.9 5.66 11.0 468 220

Weighted mean  NCEP-R2 - 57 - 119 - 55 - 15.6 - 36
ERA-Interim 7.5 47 71 118 15.0
NCEP-CFSR 9.2 5.0 89 143 18.2
NASA-MERRA 9.3 6.4 89 15.2 17.1
NCEP-FNL 8.2 7 7.8 15.5 115
NCEP-GFS 8.7 4.6 83 134 17.3

wind speed, due to their shift to the right side of the wind speed axis
when compared to the PDF’s derived from measured data. This
shifting translates a model underestimation (overestimation) of
low (strong) wind speed frequencies, which will have as a conse-
quence the detected model wind speed overestimation tendency.

Comparing the several simulations NCEP-R2 driven simulation
is the one with the PDF’s closest to the measured ones in all sites,
with the exception of Golfo de Cadiz where the ERA-Interim pro-
vides the best results and clearly NCEP-R2 shows the worst PDF
when compared to the measured one. For all sites (except Golfo
de Cadiz), the simulations driven with ERA-Interim and NCEP-
GFS seem to show PDF's closer to the measured wind speed distri-
butions, after NCEP-R2 driven simulation. These results translate
the fact that NCEP-R2 driven simulation was the one with the low-
est biases for the wind speed, and since PDF's are purely cumula-
tive they do not take into account the temporal simultaneity of
the observed and simulated data, the simulation with lower wind
speed biases will most likely be the one with the PDF closest to the
measured one [1].

Table 4 shows the Weibull distribution scale (A) and shape (k)
parameters, the mean (U,,) and most probable (Up.) wind speed
together with the wind energy flux (Py,) estimates percentual
deviations when compared to the observed data. The lowest error
scores in the weighted mean values are underlined for guidance.

Table 4 shows that NCEP-R2 driven simulation has the lowest
errors for the Weibull A parameter, mean wind speed wind power
flux estimations. For the most probable wind speed ERA-Interim
driven simulation is the one with the lowest weighted mean devi-
ations, and for the Weibull k parameter the simulation driven with
NCEP-GFS is the one with the best performance. However, the ERA-
Interim driven simulation is the one with the second best perfor-
mance for all parameters with the exception of the wind power
flux, where the simulation driven with NCEP-FNL shows the best
performance after the simulation driven with NCEP-R2. Although
the good performance of NCEP-R2 driven simulation, it shows
the worst results for the most probable wind speed and k param-
eter. Again it is visible the wind speed overestimation tendency
both for the mean but especially for the most probable wind speed,
which is also translated in the overestimation of the wind power
flux estimations by the model.

Considering the results presented in Table 4, NCEP-R2 reanaly-
sis is able to provide the best wind energy flux estimations, the
most relevant factor for wind energy resource assessment studies.
However, the results depicted in Table 3 showed that the simula-
tion forced with ERA-Interim is the one with the lowest errors in
terms of accurately representing the wind temporal variability
(RMSE and STDE). This better accuracy in terms of wind temporal
variability is also relevant for other wind energy related aspects,
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such as wind turbines installation and preliminary assessment of
the variability of wind energy injection in the electrical grid. The
latter is a paramount issue for the electrical grid balancing, which
must at all times balance the amount of electricity injected in the
grid with one being consumed. Since electricity derived from wind
farms is very variable in time (due to the inherent temporal vari-
ability of the wind), it is important for electrical grid operators to
possess a preliminary estimate of the typical local wind temporal
variability. Moreover, accurate wind data in terms of temporal var-
iability is a key factor to drive ocean wave energy models, as wind
is the main energy source of ocean waves [40,41]. Inaccuracies in
the local wind fields can have a strong impact in wave energy mod-
elling results, due to distortions of the model forcing mechanisms.
The results presented in this work show that, in accordance to
what was concluded for onshore sites in [1], the new generation
reanalyses are able to offer significant improvements in the near-
surface wind simulation, providing simulations with lower errors
especially in what is related to the wind temporal variability accu-
racy. ERA-Interim is, among the new generation reanalyses, the
one with the best overall performance when compared to mea-
sured winds, both for onshore and offshore sites. However, for off-
shore sites NCEP-R2 provides the simulation with the lowest errors
in terms of the mean wind speed (bias, mean wind speed and wind
power flux deviations), while for onshore areas the NCEP-FNL and
NCEP-GFS showed the lowest errors for these metrics | 1]. Combin-
ing these results for onshore and offshore sites, it becomes clear
that although the new generation reanalyses are able to improve
the wind temporal variability simulation, they do not show similar
improvement for the wind speed mean state. These higher wind
speed biases of the new generation reanalyses can be related to
the fact that, although the new variational bias correction tech-
niques applied to the new generation reanalyses allow smoother
transitions between different satellites observations, it also pro-
duces a potential drift toward the model bias [42], which is poorly
assessed in areas with strong data scarcity such as ocean areas [9].
Furthermore, and as seen for onshore sites in [1], the simula-
tions driven with analysis datasets (NCEP-FNL and NCEP-GFS)
show lower errors when compared to the other new generation
reanalyses (NCEP-CFSR and NASA-MERRA). This can be explained
by the fact that, unlike reanalyses products, analyses use the most
recent and up-to-date operational model, improvements and
updates, together with observed data assimilation methods and
schemes | 1]. However, for offshore sites the use of these analyses
products apparently do not provide such better results (when com-
pared with the use of reanalyses) as for onshore sites because,
despite these potential advantages, ocean areas such as the ones
under study here are typically characterized by a strong scarcity
of measured data, which can favor the use of reanalyses products:
most of the measured data in such areas is not directly assimilated
into operational models such as the GFS model (in which NCEP-
FNL and NCEP-GFS are based), being instead assimilated in a later
stage during the construction of reanalyses datasets. Therefore, in
areas poorly covered in terms of operational measurements (as is
the present case), it is expected that analyses products are not able
to show results as good as the ones provided for onshore sites
(which are richer in operational measured data), and reanalyses
datasets can provide better performances (as seen for ERA-Interim
and NCEP-R2, but not the case of NCEP-CFSR and NASA-MERRA).

4. Conclusions

The present work arises as an extension of the previous study of
[1], in which the WRF model was forced by different initial and
boundary conditions (NCEP-R2, ERA-Interim, NCEP-CFSR and
NASA-MERRA reanalyses, and also the NCEP-FNL and NCEP-GFS
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analyses) aiming to assess which one of the tested reanalyses data-
sets provides the most accurate near-surface wind simulations for
onshore sites. Due to the fact that offshore areas are characterized
by considerably higher wind-derived energy potential production
than onshore sites (due to stronger near-surface wind speeds),
there has been an increasing interest of the wind power industry
in the prospection of potential sites for the installation of offshore
wind farms. Therefore, it becomes paramount to analyze which
one of these initial and boundary data products offers the most
accurate wind simulation also for offshore sites. For this, six rea-
nalyses/analyses products were used to drive ocean near-surface
wind simulations and its results compared with measured wind
data collected in five buoys located offshore of the Iberian Penin-
sula (Galician coast and Gulf of Cadiz). The main conclusions can
be summarized as follows:

ERA-Interim driven simulation is globally the one closest to the
measured winds, with the best performance in terms of the wind
temporal variability (RMSE, STDE and R). NCEP-R2 driven simula-
tion was the one with the best performance related to the mean
wind speed, showing the lowest bias, mean speed and wind power
flux deviations. However, it was the one with the highest errors
related to the wind temporal variability.

All the simulations tend to overestimate the wind speed and
consequently the available wind power flux, due to the underesti-
mation of low wind speed frequencies and overestimation of
strong wind speed occurrences.

The model, in all simulations, showed poorer results for the
Cabo de Pefias and Golfo de Cddiz buoys, as a consequence of the
complex orography and coastal topography of these locations.
These terrain characteristics produce terrain-induced atmospheric
flows that are not properly represented by the mesoscale model,
due to its limited resolving capacity and low-resolution terrain
data.

This work and the previous study | 1] constitute a complete and
solid analysis and testing on the use of the main reanalyses and
analyses datasets in the near-surface wind modelling, both for
onshore and offshore sites. Based on the results and findings of
these studies, ERA-Interim reanalysis will likely provide the most
accurate initial and boundary data to force near-surface wind sim-
ulations, both for onshore and offshore sites. Although for offshore
sites the NCEP-R2 reanalysis provided the most accurate simula-
tion of the potential wind power flux, fact that is of great impor-
tance for the wind energy industry, ERA-Interim reanalysis
showed the best accuracy in terms of wind temporal variability,
which can be of great importance to other wind energy related
issues, such as electrical grid balancing, and also to ocean wave
energy applications. Moreover, the NCEP-GFS and NCEP-FNL anal-
yses also showed interesting results, and can be considered as valid
alternatives to ERA-Interim and NCEP-R2, in particular for cases
where reliable forcing data is needed for real-time applications
due to their fast availability.
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Chapter 4 — Optimisation of the NWP
model wind simulation: testing of PBL

parameterizations options

This chapter focuses on the optimisation of the WRF model regarding which PBL physical
parameterization schemes options provide wind power flux, wind speed and direction
simulations closest to measured wind data, both for offshore and onshore areas. This
chapter describes this research through one published research article, in which is detailed
the methodology followed, state of the art area under study, parameterizations tested and
observed data used to compare the several simulations. This article is available in the link:

http://www.sciencedirect.com/science/article/pii/S0306261914008939
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HIGHLIGHTS

« WRF model near surface wind simulation sensitivity to different PBL and SL parameterizations was assessed.

« Simulations were evaluated using onshore and offshore measured data in the Iberian Peninsula,

« ACM2-PX PBL-SL schemes provided the best overall results in terms of wind and wind energy flux simulation.
« QNSE-QNSE PBL-SL schemes presented the best energy flux estimates for offshore areas.

« This study provides valuable guidelines for future offshore and onshore wind energy assessment applications.

ARTICLE INFO ABSTRACT

Article history: This work aims to assess the Weather and Research Forecasting (WRF) model wind simulation and wind
Received 13 February 2014 energy production estimates sensitivity to different planetary boundary layer parameterization schemes.
Received in revised form § July 2014 Five WRF simulations considering different sets of planetary boundary layer (PBL) and surface layer (SL)

Aezepred 20 August 2014 parameterization schemes were performed, and their results compared to measured wind data collected

at five offshore buoys and thirteen onshore wind measuring stations located in the Iberian Peninsula. The
objective is to determine which of these model configurations produces wind simulations and wind

f\f{‘;oms; energy productions estimates closest to measured wind data and wind energy production estimates
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Onshore ising one for the future installation of offshore wind farms.

The results presented in this work show that, although no major differences are seen among the sim-
ulations in terms of wind speed and direction simulation accuracy, in terms of wind energy production
estimates the differences are not negligible due to the high sensitivity of the wind energy production to
the wind simulation accuracy. The PBL-SL parameterization set composed by the schemes ACM2-PX is
the one with the lowest errors when compared to observed wind data, when considering all onshore
and offshore sites together. The ACM2 PBL scheme combines features of local and non-local closure
schemes and the PX LSM scheme provides a better parameterization of the surface meteorology, which
proved to be important in the model performance. However, for offshore sites the PBL-SL parameteriza-
tions QNSE-QNSE produced the best wind energy production estimates.

Due to the close dependence of each PBL and SL scheme performance on the surrounding synoptic con-
ditions and atmospheric stability, it is expected that for different geographical areas andfor temporal
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periods these schemes may show different results. However, the fact that this study includes one com-
plete year of simulation for a considerably wide geographical area, including the different synoptic con-
ditions that typically occur in a annual cycle, provides a solid base of confidence that the conclusions
drawn from this work may be applied to other periods and/or geographical areas.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The traditional energy sources based on fossil fuels are becom-
ing scarce, economically and environmentally unsustainable [1,2].
Therefore, it is paramount to find valid renewable and environ-
mentally-friendly alternatives to fossil fuels-based energy sources.
This need has been increasingly recognized in public, political and
economic frameworks, making the European Union a good exam-
ple of the support and application of target-binding agreements
and directives [3]. Wind-derived energy has been widely recog-
nized as one of the most technologically mature and economically
competitive renewable energy source, with a fast worldwide grow-
ing in terms of installed generating power in the last decades [4-
10] and being presently one of the main electricity suppliers in
European countries. In terms of installed onshore wind generating
power, Portugal has been one of the leading countries: in 2012,
Portugal ranked in 10th worldwide and 5th among European coun-
tries in terms of total installed capacity [11], and in the same year
was able to achieve an 20% penetration of wind-derived energy in
the total annual electricity consumption, surpassed only by Den-
mark in this parameter [12]. The Iberian Peninsula is presently
one of the areas with the highest percentage of installed onshore
wind power per capita worldwide due to its favourable wind con-
ditions, making this area a promising one for the future installation
of offshore wind farms due to its large coastal line and interesting
wind energetic potential.

The global intensive growth of installed wind power witnessed
in the last decade and the future expansion of the wind energy
markets has increased the need to correctly identify the remaining
most promising sites for wind energy exploitation [13]. Despite
this quick proliferation of wind energy exploitation, the lack of reli-
able measured wind data in many areas of the world, especially in
developing countries, is still hampering the development of new
wind energy projects [14]: the potential wind energy resource of
one area is typically assessed and quantified making use of wind
measurements collected within that area, and to assess the wind
resource of the area at least one year of wind measurements needs
to be performed, to realistically characterize the local wind clima-
tology. For onshore areas there is a considerable amount of mea-
sured wind data available, but the costs involved in the planning,
installation and maintenance of wind measuring masts are consid-
erably high and if the locally acquired wind data shows a low wind
energetic potential of the area under consideration, a considerable
amount of investment and time is irreversibly lost. For offshore
areas the scenario is significantly worse, with a strong lack of mea-
sured wind data due to the fact that the costs and technological
challenges involved in installing wind measurement masts are
exponentially higher when compared to the onshore case. As a
consequence, ocean wind data is traditionally obtained through
buoys deployed on ocean areas, satellites, onboard ships and ves-
sels. However, measured wind data from buoys and ships is nor-
mally collected inside a limited spatial and time window, while
wind observations taken by satellites typically suffer from large
amounts of missing/poor quality data and low spatial/temporal
resolutions [15,1G].

Considering these needs and limitations of measured wind data,
reliable alternative sources of wind data specifically aimed to
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assess the wind resource of a given area are currently a very valu-
able product. Numerical weather prediction (NWP) models, capa-
ble of derive high resolution wind data, are one of the most used
alternative sources of wind data | 17]. Despite the promising results
obtained until now with NWP models, the modelling of the near-
surface winds is still a major challenge to atmospheric researchers,
mainly due to the strong interaction between these low-altitude
atmospheric flows and the local topography. This interaction,
which influences the flow circulation patterns particularly for
near-surface winds, is described by the atmospheric planetary
boundary layer (PBL) theory. Offshore winds, in particular coastal
ones, normally present added difficulties for their modelling when
compared to typical open sea and onshore winds due to the fact
that they are strongly influenced by the local topography, discon-
tinuities between land and sea roughness and by thermal gradients
resulting from land-sea temperature differences.

Since both onshore and offshore wind energy are derived from
near surface flows, the modelling results will strongly depend upon
the ability of the NWP model to correctly represent and simulate
the PBL processes. Usually the majority of these occur at spatial
scales smaller than the model grid resolution, making them sub-
grid processes (thus, unresolved explicitly by the model) that
require an implicit treatment. This is done using physical parame-
terization schemes, which use physical assumptions and empirical
approximations to represent these processes. The NWP mesoscale
model used in this work is the WRF model (version 3.4.1), an
extensively-used state-of-the-art NWP model. A detailed descrip-
tion of this model can be found in Skamarock et al. [18]. In this
work, we focus on the PBL and surface layer (SL) parameterization
schemes. These parameterizations are used to represent the heat,
momentum and moisture transfers between the atmosphere and
the surface and are closely interconnected, interacting non-linearly
with each other and also with the dynamical core of the model.
Therefore, identifying the best set of parameterization options
becomes highly complex due to high-dimensional, multi-modal
and mostly non-linear interactions that can occur [19]. Given this,
in order to assess which is the best physical parameterization set to
be used for a given model in a given area, a careful determination
of the most appropriate model configuration is necessary by com-
parative evaluation of all the available options.

In the published literature, several studies can be found that
assess the sensitivity of the WRF model to the use of different
physical parameterization schemes in the near-surface winds sim-
ulation for different locations and time periods [20-28]. However,
the performance of these physical parameterization schemes is
highly dependent on the geographical area and time period under
analysis, given that the results can be very different if the simula-
tion is focused on a summer/winter period or on a specific meteo-
rological episode due to the different atmospheric stability and
synoptic conditions. Since this work is focused on a full-year period
(covering a complete meteorological/weather annual cycle), find-
ings drawn from those studies do not apply here. As far as the
authors are aware, no study was found that analyzes WRF wind
simulation sensitivity to the choice of PBL parameterizations
schemes for the geographical area here considered that spans
through at least one complete year. However, it is worth mention-
ing studies that tested the use of different PBL schemes considering
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a complete year of simulation, although for different geographical
areas: Menéndez et al. [29] assessed the WRF model sensitivity to
the choice of several PBL and SL parameterizations schemes
(ACM2-PX, YSU-MMS5, MY]-ETA, see Section 2.2 for the parameter-
ization schemes naming conventions) for offshore wind simulation
considering a complete year over the Mediterranean basin con-
cluding that the YSU-MMS5 schemes showed better results. Krogsa-
eter et al. [30] tested a broad range of PBL and SL physical
parameterization schemes (ACM2-PX, YSU-MM5, MYJ-ETA,
QNSE-QNSE, MYNN-2.5-MYNN) over a one-year simulation of off-
shore winds in the Southern North Sea, concluding that the best
performances were provided by the MYJ-ETA and MYNN-2.5-
MYNN schemes, and the worst results from the YSU-MM5
schemes. From these studies it is clear the performance of the
parameterization schemes can vary from one site to another.
Therefore, the best combination of physical parameterization
schemes for one region may not necessarily be directly generalized
to another. Thus, it becomes important to perform these sensitivity
tests for the areas under study.

The aim of this paper, which builds on the previous studies of
Carvalho et al. [31-33], is to compare the performance of the
WRF model under the use of different physical parameterization
sets related to atmospheric boundary layer processes, assessing
which provides the most accurate simulation of offshore and
onshore wind speed, direction and power flux density. This study
can provide important information and guidelines for future
onshore/offshore wind energy assessment studies focused on areas
where measured wind data is not available (or is insufficient for
the desired purposes) and NWP modelling is, therefore, unavoid-
able. This work focuses on the [berian Peninsula, an area with
intensive wind energy penetration due to its favourable wind con-
ditions, which combined with its large coastline makes this area a
promising one for the future installation of offshore wind farms.

2. Methodology and data
2.1. Measured wind data

Wind measurements collected at thirteen wind measuring sta-
tions distributed throughout the Portuguese territory, and offshore
wind data collected by five buoys moored off the northern and
western coasts of Galicia and the Gulf of Cadiz were used to eval-
uate the model simulations. The buoys are operated and main-
tained by the Spanish Agency Puertos del Estado, and their
locations are depicted in Fig. 1. As for the onshore stations, they
are mainly concentrated in four areas where several wind farms
are currently in operation or planned to be built in the near future,
All the wind measurements were performed before any wind farm
was installed, being free from wake effects caused by nearby wind
turbines in operation. The locations of the onshore stations are also
depicted in Fig. 1, together with the terrain height extracted from
the Shuttle Radar Topography Mission (SRTM) database [34].
Table 1 shows a brief description of each onshore and offshore site:
name, terrain height, measurement height above ground level
(a.g.l.) or above mean sea level (a.s.L.), distance to coast (for the off-
shore sites) and difference between the site real height a.g.l. and
the site height a.g.l. in the WRF model simulation grid. This work
uses data collected between January 1st and December 31st 2008.

Ocean surface wind is typically referred to 10 m above sea level
(a.s.l.), and considering the fact that the buoys measure the wind at
3 mas.l, winds were extrapolated to 10 m a.s.l. Real winds are
dependent on the surrounding atmospheric stability and, in order
to perform a wind extrapolation that takes into account the atmo-
spheric stability, methods like the Monin-Obukhov theory [35]
should be applied. These methods require information regarding

Terrain Height (m)

Latitude (°)

95 85 7.5 6.5
Longitude (°)

Fig. 1. Onshore and offshore sites.

the friction velocity, temperature and surface heat fluxes, which
are not available for the buoys considered in this work. Therefore
alternative methods, which do not take into account the atmo-
spheric stability and assume a neutrally stable atmosphere, have
to be considered. However, some of these alternative methods also
require additional data such as air and sea surface temperatures,
pressure and relative humidity (like the method described in Liu
and Tang [36]) that are also unavailable for the buoys used here.
In the absence of such data, the logarithmic wind profile expres-
sion (1) will be here employed to extrapolate the winds from 3
to 10 m a.s.l.:

4 Zym

This method assumes a neutrally stable atmosphere, where U,
is the wind speed at a height z, z,;; is the measurement height,
Uz, is the wind speed at the measurement height and z, is the
roughness length. A typical z, for the ocean surface can be assumed
of 1.5 x 107* m [37]. Several authors [38-41] made detailed anal-
yses on the differences between stability-dependant and equiva-
lent neutral winds and concluded that differences between winds
that assume a neutrally stable atmosphere and the real winds (sta-
bility-dependent) are typically low over the global ocean (in max-
imum 0.5ms™'). Moreover, the fact that this extrapolation is
carried out for a relatively small difference of heights (from 3 to
10 m) over a surface with low roughness values, suggests that
the difference between measured and extrapolated winds is negli-
gible. Additionally, since this analysis covers a whole year of mea-
surements it is expected that the average atmospheric stability will
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Table 1
Information regarding the considered onshore and offshore sites.

Buoy Height a.s.l. (m) Measurement height (m) Distance to coast
Offshore sites
Pefias 0 3 (extrapolated to 10 m) ~-20 km
Villano 0 3 (extrapolated to 10 m) ~30 km
Bares 0 3 (extrapolated to 10 m) ~-32 km
Silleiro 0 3 (extrapolated to 10 m) ~40 km
Cadiz 0 3 (extrapolated to 10 m) ~55 km
Station Height a.gl (m) Measurement height (m) Difference between real and WRF grid height (%)
Onshore sites

1 676 60 -33

2 818 60 -56

3 1072 61 23

4 979 60 -19

5 876 61 -9

6 876 61 -10

7 174 G1 -55

8 162 60 -25

9 451 81 -12
10 325 82 -10
11 315 82 -16
12 501 61 -19
13 476 61 -16

be close to a neutral regime. However, and specifically for offshore
wind energy applications, these measurements should be collected
at typical hub heights (80-120 ma.s.l.) to avoid large extrapola-
tions (from 3-10 to 80-120 m a.s.l.) and consequent introduction
of non-negligible error sources in the measured data.

2.2. Model and simulations design

The WRF model contains several alternative schemes for the
PBL processes parameterization. Although SL and PBL parameter-
izations schemes are treated separately by the model, they
strongly interact with each other. Therefore, the choice of a given
PBL parameterization scheme will determine the choice of the SL
parameterization scheme [18]. 5 different combinations of PBL-
SL schemes were tested, considering these restrictions and also
avoiding the use of old, obsolete options, new schemes still at an
experimental stage, and schemes specifically designed for particu-
lar applications (such as for large eddy simulations and urban can-
opy models).

The physical configuration of each simulation, summarized in
Table 2, considered the following sets of PBL-SL parameterization
schemes: the Yonsei University (YSU) PBL scheme [42| combined
with the MMS5 SL similarity scheme [43]; the Mellor-Yamada-Jan-
jic (MY]) PBL scheme [44| with the ETA SL similarity scheme [45];
the Asymmetric Convective Model version 2 (ACM2) PBL scheme
|46,47| with the Pleim-Xiu (PX) SL scheme [48]; the Quasi-Normal
Scale Elimination (QNSE) PBL scheme [49] in combination with the
QNSE SL scheme [49,50] and the Mellor-Yamada Nakanishi and
Niino level 2.5 (MYNN-2.5) PBL scheme 51| together with the Mel-
lor-Yamada Nakanishi and Niino (MYNN) SL scheme [51,52]. As for

Table 2
Physical configuration of the simulations,
Simulation YMN MEN  APP QON MMN
SL MM5  ETA PX QNSE  MYNN
PBL Ysu MY] ACM2 QNSE  MYNN-2.5
LsM Moah PX Noah
Long-wave radiation RRTM
Short-wave radiation Dudhia
Cumulus Kain-Fritsch

Microphysics WSM6G6
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the remaining physical parameterizations, they were selected and
used for all simulations as follows: the WRF Single-Moment 6-
Class (WSMG6) for the microphysics [52], the RRTM scheme for
the long-wave radiation |54|, the Dudhia parameterization for
the sort-wave radiation [55], the Kain-Fritsch scheme [56] for
cumulus parameterization and the Noah LSM scheme [57]. The
exception is when the PX SL together with the ACM2 PBL schemes
are chosen: in this case, the PX LSM scheme [58] must be used.

The initial and boundary conditions data were selected accord-
ing to the findings of Carvalho et al. [31-33], which tested the use
of several reanalysis and analysis datasets in the simulation of near
surface winds for the same areas under scope in this study and
concluded that ERA-Interim reanalysis provide the best initial
and boundary conditions for these sites. The innermost simulation
domain (Fig. 2, darker grey) has a horizontal resolution of 5 km and
the largest domain (Fig. 2, lighter grey) has a horizontal resolution
of 25 km. 27 vertical levels were used in all domains.

Simulated wind time series for all sites, extracted at the same
locations and measuring heights, were obtained by performing a
horizontal and vertical bi-linear interpolation between the closest
simulation grid points (of the 5 km resolution demain) to the wind
measuring sites location.

2.3. Statistical metrics

The statistical metrics used to evaluate the simulations were
the Root Mean Squared Error (RMSE), the bias, Standard Deviation
of the Error (STDE) and the correlation coefficients (R?) for the
wind speed and direction.

Weibull probability density functions (PDFs) were used to char-
acterize the local wind regimes (in terms of the wind speed distri-
butions) and to assess which parameterization set produces
Weibull PDFs closest to the ones derived from measured wind
speed. The Weibull distribution has been extensively used to
describe wind speed distributions, in particular for wind energy
applications, due to its accurate fit to wind speed data. The mean
and most probable wind speed, derived from the Weibull PDF,
were also used as comparative metrics.

The wind power flux was computed for all sites using observed
and simulated wind speeds. The power flux was calculated consid-
ering only wind speeds between 3.5 and 25 ms ', the typical wind
turbines cut-in and cut-off speeds.
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Fig. 2. Simulation domains.

3. Results and discussion
3.1. Statistical analysis

The RMSE, Bias, STDE and R between the measured and simu-
lated wind data are presented in Table 3, considering the number
of simultaneous and valid pairs of records between the simulations
and the respective station. Due to the high number of stations, it
was decided to divide Table 3 in three different sections: the
weighted mean values (the mean for all sites weighted by the
respective number of data records) for each statistical metric for
the offshore sites: the weighted mean values for each statistical
metric for the onshore sites; and finally the weighted mean values
for each statistical metric considering all the sites together. In each
one of these sections, the lower error scores for each statistical

error metric are highlighted in bold (for the offshore and onshore
sections) and underlined (in the global weighted mean values),
for a better interpretation.

Taking the weighted mean results considering both offshore
and onshore sites (last section), simulation APP clearly appears as
the one with the overall best performance. For the wind speed it
shows the lowest RMSE, Bias and STDE, together with the highest
correlation coefficients. For the wind direction simulation APP
again shows the lowest Bias, although for the RMSE and STDE sim-
ulation YMN is the one with the best results but closely followed
by simulation APP. For all simulations the weighted mean values
of the wind speed bias are positive, indicating a tendency of the
model to overestimate the wind speed.

Looking in more detail to the offshore group, in terms of the
wind speed and direction, simulation APP is the one with the

Table 3
Statistics of the comparison between observed and simulated wind data.
Area Simulation RMSE Bias STDE R
Speed (ms') Direction (°) Speed (ms') Direction () Speed (ms™") Direction (%) Speed (ms™') Direction (¢)
Offshore YMN 1.85 38.59 0.48 3.41 1.78 38.36 0.88 0.83
MEN 1.86 38.56 041 1.94 1.81 38.44 0.88 0.83
APP 1.83 38.07 0.46 2 1.76 37.93 0.88 0.84
QON 1.86 38.19 0.35 1.81 1.82 38.01 0.87 0.83
MMN 1.91 39.09 0.57 4.08 1.82 38.81 0.87 0.83
Onshore YMN 2.10 35.02 0.34 -0.35 2.02 34.87 0.79 0.78
MEN 2.03 35.55 011 -0.77 1.96 35.43 0.79 077
APP 1.91 35,72 -0.17 -2.53 1.88 3548 0.80 0.78
QON 219 37.68 0.26 -0.07 2.10 37.56 0.75 0.72
MMN 202 3553 018 0.03 1.96 35.39 0.79 0.77
All sites YMN 1.97 36,81 0.41 1.53 1.90 36,61 0.83 0,81
MEN 1.94 37.06 0.26 0.59 1.88 36.94 0.83 0.80
APP 1.87 36.89 0.14 -0.11 1.82 36.71 0.84 0.81
QON 2.03 37.93 031 0.87 1.96 37.79 0.81 0.78
MMN 1.97 37.31 0.38 2,05 1.89 37.10 0.83 0.80
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highest R, lowest RMSE and STDE, while simulation QQN presents
the lowest bias. The worst results are obtained with simulation
MMN, also for the wind speed and direction. For all simulations
at all buoys, the wind speed bias is positive, indicating a tendency
of the model to overestimate the wind speed. For the wind direc-
tion, it all stations and simulations the obtained biases were posi-
tive, meaning that the model has a tendency to simulate the wind
with a slight anti-clockwise wind rotation. Regarding the wind
speed of the onshore group, simulation APP is the one with the best
scores (highest R, lowest RMSE and STDE), while simulation MEN
shows the lowest Bias (closely followed by simulations APP and
MMN). All simulations show a tendency to overestimate the wind
speed (positive bias for the wind speed) with simulation APP being
the only exception, which shows an opposite tendency. For the
wind direction, simulations YMN (RMSE, STDE and R) and MMN
(Bias) show the best results. Given the negative biases for the wind
direction, it can be seen that all simulations (except simulation
MMN) depicted the wind direction with an anti-clockwise rotation,
although these rotations are residual. The highest correlations for
the wind speed are obtained with simulation APP, and for the wind
direction with simulations YMN and APP (with simulation QQN
standing out as the one with the worst correlation coefficient for
the wind direction).

Considering the results presented in Table 3, it is noticeable that
the different PBL-SL schemes lead to slightly different results, as a
consequence of the different approaches to model the momentum,
energy and moisture fluxes. One of the main differences between
these five parameterizations sets is that some of the PBL schemes
are based on non-local closure formulations (YSU), while other
parameterizations sets use local closure approaches (MY], QNSE,
MYNN-2.5). Although typically ACM2 is considered as a non-local
scheme, this parameterization is in fact a mixed local and non-local
scheme. Closure schemes are needed to calculate the turbulent
fluxes from the mean variables: while local closure schemes esti-
mate the turbulent flows at each model grid point from the mean
atmospheric variables andfor their gradients at that point, non-
local closure schemes estimate the same fluxes at a given point
using the mean profiles over the entire domain of turbulent mixing
|59]. Local closure schemes are more appropriate for stable atmo-
spheric regimes [60,61]. Their assumption that fluxes only depend
on the grid points values and gradients can lead to errors under
unstable atmospheric conditions, when turbulent fluxes are domi-
nated by large eddies that transport variables to longer distances
|61-63]. By contrast, non-local closure schemes are more suitable
for unstable boundary layers, due to the fact that this type of
schemes account for larger eddies [61,64,65]. As reported by
Mufioz-Esparza et al. [ 25,66 ] these kind of schemes fail in reproduc-
ing stable wind speed vertical profiles due to an excessive turbulent
mixing near the surface, in particular during stable and stratified
atmospheric conditions |67]. Therefore, non-local schemes, with
the entrainment flux proportional to the surface flux, have their
strength under unstable conditions, whereas in stable conditions
the local closure schemes allow a better performance.

ACM2 includes characteristics both from local and non-local clo-
sure formulations: although it uses a non-local closure method
(convective transport), it includes a first order eddy diffusion com-
ponent to improve the vertical profiles simulation accuracy near
the surface. This way, in the presence of stable or neutral atmo-
spheric regimes, the ACM2 PBL scheme shuts off the non-local
transport and uses local closure [59]. Basically, this scheme uses a
non-local approach under unstable atmospheric regimes and a local
one in the presence of stable/neutral conditions, which constitutes
aclear advantage. Moreover, WRF's PBL schemes have a tendency to
provide lower time variability due to the range of resolved scales
and turbulence modeling, and explicit non-local mixing schemes
like the ACM2 attenuates this effect [66]. Furthermore, none of
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WRF's PBL schemes is able to accurately simulate the sudden
increase in the wind speed following the convective initiation in
the morning [G1]. However, non-local closure schemes simulate
more quickly the surface wind increase in the early stage of
mixed-layer development than the local closure schemes. In addi-
tion, the LSM PX scheme (used together with ACM2) is able to pro-
vide more accurate near surface meteorology than the Noah LSM
scheme [58,68] mainly due to its soil moisture nudging, which is
one of the most sensitive parameters in simulating wind speeds
[69]. LSM parameterizations interact with PBL and SL parameteriza-
tions due to the fact that they combine atmospheric information
from the SL schemes with land surface properties to evaluate the
vertical transport computed in the PBL schemes, which has a direct
influence on the estimation of the PBL height [70]. This can have
great impact in the near-surface wind simulation, due to the strong
influence of the terrain characteristics (topography, land use, etc.)
in the low altitude atmospheric flows. ACM2 PBL parameterization
combines characteristics of local and non-local schemes and the PX
LSM scheme is able to better represent the near-surface meteorol-
ogy. These features of ACM2 and PX schemes can justify the better
performance of this parameterization set in the simulation of near
surface wind.

3.2. Geographical analysis of the simulations performance

All the onshore and offshore sites were divided into groups
according to their geographical location and the same statistical
analysis was performed for all the groups, in order to assess if
the parameterization sets performance varies with the geographi-
cal area, To this end, and considering the spatial distribution of the
offshore and onshore sites, these sites were divided into the fol-
lowing geographical areas: Area 1, which includes the offshore
sites Pefias, Bares, Villano and Silleiro; Area 2, with the onshore
sites 1, 2 and 3; Area 3 includes the onshore sites 4, 5 and 6; Area
4 with the onshore sites 7 and 8; Area 5 with the onshore sites 9-
13; and Area 6 corresponding to the Cadiz offshore site. These
areas are depicted in Fig. 3 and the weighted mean statistical
scores for each area are presented in Table 4.

According to Table 4 it is visible that the RMSE and STDE for the
wind speed has no significant geographical differences in terms of
each simulation relative performance when compared to the
remaining ones, this is, simulation APP shows the lowest wind
speed RMSE and STDE for nearly all geographical groups. The
exceptions are seen in area 2, where simulation MMN shows the
best performance for the wind speed temporal variability (RMSE,
STDE and R), and area 1 where the lowest RMSE is obtained by sim-
ulation QQN. But even in these areas simulation APP closely fol-
lows simulations QQN and MNN. As for the wind speed biases,
simulation APP has the lowest values for all areas except group 1
and 2. For the wind direction the opposite is seen, with no simula-
tion clearly standing out and appearing that for each group a differ-
ent parameterization set produces the best results.

Although not shown in Table 4, it is worth mentioning that in all
offshore simulations the worse results are seen in Pefias buoy. The
simulations results for the Gulf of Cidiz site also show higher
errors when compared to Bares, Silleiro and Villano. This is due
to the strong dependence of these coastal winds with the sur-
rounding topography and to high-resolution land-sea coastal inter-
action mechanisms (such as coastal breezes due to land-sea
temperature gradients, terrain-induced wind circulations and
abrupt roughness changes), and the limited resolution of the meso-
scale model terrain data limits its accurate representation of these
terrain-induced circulations. A more detailed analysis on this issue
can be found in Carvalho et al. [32].

One intriguing fact shown in Tables 3 and 4 is that all simula-
tions tend to overestimate the wind speed for onshore sites,
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considering the positive wind speed biases detected. This fact is
not wholly surprising for offshore sites, since the WRF model con-
siders the ocean as a constant and flat surface while the real ocean
has higher roughness lengths (due to changes in the ocean surface
heights), the simulated lower roughness lengths over the ocean
produce winds with lower friction between atmosphere and ocean
surface and, therefore, with higher speeds. In opposition, this wind
speed overestimation can cause some surprise for onshore sites,
because the application of mesoscale models for wind energy
assessment studies typically shows wind speed underestimations
at potential sites for installing wind farms (typically mountain
ridges) |eg., 17, 21 and references therein|. Despite the fact that
the aim of this study is not to analyze in detail the errors of the
model but instead to determine which of the parameterization sets
provides more accurate results, it should be noted that mesoscale
near-surface wind simulation errors can have multiple sources
(from model errors in representing atmospheric mesoscale fea-
tures to incorrect representation of local terrain and roughness
heights, leading to a misrepresentation of the local terrain com-
plexity). Typically, this misrepresentation of the local terrain
topography and complexity leads to underestimation of the wind
speeds in mountain ridges, but other situations can occur that will
cause the inverse behaviour. Carvalho et al. [31] reported the same
tendency for the model to overestimate the wind speed in some of
the stations used in this work. That study made a detailed analysis
on the wind speed overestimation by WRF for these locations and
concluded that this overestimation is often related to the fact that
in those locations the smoothed topography in the model is not
able to represent orographic blockages in dominant wind direction

sectors that occur in the real terrain. Also contributing to the over-
estimation of the wind speed by the model is the smoothing of the
terrain complexity that can produce simulated winds: a flatter ter-
rain means lower drag between the surface and the atmosphere,
inducing higher surface flow speeds. Mass and Ovens [71] found
that WRF modelled winds exhibit a high wind speed bias over land
due to the exclusion of sub-grid orographic drag in the formulation
of roughness lengths. Therefore, by formulating roughness length
including these effects it was possible to significantly reduce the
high wind speed bias in near surface winds. Moreover, there seems
to be present a tendency for the maodel performance to be degraded
in locations that show higher terrain complexity (quantified in the
form of the ruggedness index, or RIX, factor) and, as a consequence,
in stations where the difference between real and model mesh ter-
rain height is higher (Table 1). This is the case for area 2, where the
difference between real and model terrain height of the sites are
higher, the local terrain complexities are also higher and the sim-
ulation errors are also higher when compared to the remaining
geographical areas. This was to be expected and it is a feature com-
mon to almost any type of model, due to their low topography data
resolution that cannot properly represent terrain-induced circula-
tions. Considering also the results presented in Table 3, it is visible
that the model tends to show a better performance for offshore
sites, mainly in the wind speed simulation. This can be explained
by the fact that, since in ocean areas these terrain topography/com-
plexity model limitations do not apply, the model is able to attain a
better performance.

3.3. Simulated wind speed performance variation with seasonality

In this section, the simulations and measured data are analyzed
per season: Winter (December to February), Spring (March to
May), Summer (June to August) and finally Autumn (September
to November). For each season the wind speed RMSE and Bias of
each simulation for all sites are presented in Table 5.

According to the results presented in Table 5, and considering
the global results for all sites (last section of Table 5), simulation
APP is the one with the best results for all seasons, both in terms
of the wind speed temporal variability (RMSE) and in terms of
the wind speed mean behaviour (Bias). The ACM2 PBL scheme it
is systematically the one with the best results when considering
all the sites statistics, which might be related to the fact that this
PBL scheme combines features of local and non-local schemes as
mentioned above. Analyzing these results for each geographical
area, for practically all areas simulation APP is the one with the
lowest errors for all seasons. Only for areas 1 and 2 local schemes
seem to be the ones with the best results (simulation APP is the
best only for Spring in area 2 and Summer in area 1), Also in area
4 the best results for Summer period are obtained with the
MYNN2.5 PBL scheme.

An interesting fact is that all parameterization schemes seem to
have worse performance in Winter and Autumn periods. This was
somewhat expected for non-local schemes (simulation YMN, con-
sidering that simulation APP shares characteristics of both local
and non-local schemes), due to the fact that particularly in Winter
is more probable that stable atmospheric conditions can occur near
the surface due to colder surface temperatures. Under these atmo-
spheric conditions, non-local schemes can have worse perfor-
mances. However, it would be expected that simulations MEN,
QQN and MMN would show the best results in the Winter due to
the local closure formulations of their PBL schemes. Nevertheless,
it is visible that in Winter period the local schemes are the ones
with the best performance after simulation APP, while for the Sum-
mer period these simulations show the worst overall results.

By performing simulations using different PBL-SL schemes
under different atmospheric stability regimes, Drax| et al. [23]
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Table 4
Statistics between observed and simulated wind data per geographical area.
Area Simulation RMSE Bias STDE R
Speed (ms ') Direction (*) Speed (ms ') Direction () Speed (ms™') Direction (°) Speed (ms ') Direction (°)
1 YMN 1.84 38.46 0.50 3.06 1.76 38.23 0.89 0.83
MEN 1.84 3852 0.40 1.68 1.79 38.40 0.88 0.83
APP 1.84 317.70 0.49 221 1.7 37.55 0.89 0.84
QON 1.83 38.05 030 1.32 1.80 37.88 0.88 0.83
MMN 1.87 3875 0.56 3.88 1.78 38.47 0.88 0.83
2 YMN 234 4337 029 ~1.83 228 4318 0.76 0.65
MEN 235 44.75 -0.63 -2.39 2.24 4457 0.77 0.58
APP 229 43.88 -0.43 ~-4.12 222 43.58 078 0.66
QON 242 46.33 -0.54 -3.57 235 46.06 0.75 0.39
MMN 227 4425 -0.47 159 219 44.09 0.78 0.57
3 YMN 2,09 39.32 0.37 0.06 2.04 39.30 0.79 073
MEN 205 39.85 0.24 0.42 2.02 39.83 0.78 072
APP 1.89 39,02 -017 -1.23 1.87 38.99 0.80 0.72
QON 215 40.51 .33 2.03 21 40.45 0.76 0.75
MMN 2.09 39.46 0.37 1.08 2.04 39.43 0.79 0.73
4 YMN 2.08 26.84 0.57 253 2.00 26.72 0.79 0.88
MEN 2.05 27.10 0.38 1.41 2.01 27.06 0.78 0.88
APP 1.90 28.60 017 0.80 1.89 28.58 0.78 0.87
QON 2.26 30.49 0.56 1.51 219 30.45 0.73 0.86
MMN 2,01 26.80 043 311 197 26,62 0.78 0,88
5 YMN 1.97 30,70 060 -0.85 1.84 3048 0.80 0.86
MEN 1.82 30.85 0.36 -1.38 1.73 30.67 0.81 0.86
APP 171 31.69 0,02 ~3.68 1.68 31.28 0.82 0.85
QON 2.06 33.67 0.58 0.14 1.92 33.57 0.76 0.85
MMN 1.84 31.44 0.36 -0.86 1.77 3127 0.81 0.86
6 YMN 1.87 39.07 0.41 4.64 1.83 38.79 0.86 0.84
MEN 1.93 38.68 0.45 2.86 1.88 38.57 0.85 0.84
APP 179 39.39 034 267 176 39.30 087 0.84
QON 1.96 18,66 054 3.55 1.88 38,50 0.85 085
MMN 207 40.30 0.63 4.76 1.97 40.02 0.84 0.82

reported that for unstable conditions the YSU scheme showed the
best performance, while for neutral and near-stable conditions the
ACM2 PBL scheme was the best one and for stable and very stable
conditions local schemes (such as the MY]) outer performed the
others. Considering that the use of a whole year of both measured
and simulated data tends to average the atmospheric regime to a
neutrally/slightly stable one, the results of this work corroborate
what was concluded in that study. The fact that local schemes
(simulations MEN, QQN and MMN for the present case) are the
ones with the second best performance for the Winter period
and the YSU non-local scheme the second best for the Summer per-
iod is also in accordance with those findings, assuming that in
Winter the occurrence of stable atmospheric regimes are favoured
(colder surface temperatures) and in Summer atmospheric insta-
bility is more likely to occur (surface warmer than the adjacent
atmosphere). However, strong atmospheric stability typically
occurs in hot Summer nights.

3.4. Simulations performance variation with measured wind speed and
direction

In this section, the simulated wind speed/direction error varia-
tion with the measured wind speed|/direction is analyzed. This can
be important to understand if the model performance is sensitive
to the magnitude of the wind speed or the direction of origin of
the wind. To that end, the measured wind speed was binned into
four categories and the simulated wind speed and direction errors
(RMSE and Bias) were computed and analyzed. Table 6 shows the
RMSE and Bias simulations scores divided into four measured wind
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speed bins: wind speeds below 4 ms™', between 4 and 8 ms',
between 8 and 12 ms ' and above 12 ms .

According to Table 6, all simulations clearly show the highest
errors in the presence of weak and strong wind speeds, both for
the RMSE and the Bias. The best performances are seen for wind
speeds between 4 and 12 ms . The fact that the model shows
worse performance for low wind speeds is not expected to bring
any significant negative impact to wind energy assessment esti-
mates, due to the fact that winds below 4 ms™' do not contribute
to wind energy production.

A striking feature is that all simulations tend to overestimate
wind speeds below 8 ms ™' (with the exception of simulation
APP) and underestimate wind speeds above this value. There
appears to be a linear variation of the Bias with the measured wind
speed: for low wind speeds the bias tend to be positive and high,
gradually lowering its value with increasing measured wind speed
and for strong wind speeds the biases are now negative and again
high in magnitude. Similar behaviour of the model was detected in
Carvalho et al. |31] for different initial and boundary conditions.

Furthermore, simulation APP provided the lowest errors for
wind speeds below 8 ms ', whilst for higher wind speeds the best
scores are obtained with the simulation MMN. This is a relevant
finding if the purpose of the mesoscale simulation is to estimate
maximum local wind speeds for site assessment purposes, for
example. This feature might be related to the aforementioned fact
the local closure formulation of the MYNN PBL scheme used in
simulation MMN can offer better performances in the presence
of stable atmospheric regimes, while the non-local closure formu-
lation of ACM2 PBL scheme used in simulation APP is more suitable
for unstable atmospheric conditions: weak winds can be related to



242 D. Carvatho et al./Applied Energy 135 (2014) 234-246
Table 5
Statistics between observed and simulated wind speed per season.
Area Winter Spring Summer Autumn
RMSE (ms ') Bias (ms ") RMSE (ms ') Bias (ms ') RMSE (ms ') Bias (ms ") RMSE (ms ") Bias (ms ')
1 YMN 1.53 0.53 1.42 0.37 1.27 0.24 1.50 0.45
MEN 1.48 0.38 1.40 0.29 1.34 022 1.51 0.37
APP 1.56 0.56 1.41 0.36 122 0.15 1.52 0.51
QON 1.51 0.23 1.42 0.24 1.27 0.17 1.49 0.30
MMN 1.55 0.52 1.44 0.40 1.31 0.33 1.52 0.52
2 YMN 245 -0.77 225 -0.51 231 039 233 -0.29
MEN 2.57 -1.11 235 0.83 2.18 0.03 227 -0.63
APP 248 -0.91 221 -0.53 2,19 020 2.27 -048
QON 2,64 -1,01 242 -0.86 229 0.15 234 0.43
MMN 243 ~0.85 2.24 -0.72 2.16 0.10 2.24 ~0.42
3 YMN 244 0.54 2.03 0.34 1.86 037 1.96 0.23
MEN 240 0.49 2,02 0.18 1.82 0.20 1.91 0.10
APP 213 -0.09 1.92 -0.03 1.65 -0.21 1.82 -0.34
QQN 239 0.39 2,08 0.10 2,06 0.56 2.05 026
MMN 242 0.52 2.03 0.38 1.86 0.31 1.99 027
4 YMN 221 0.83 1.99 041 1.47 012 253 092
MEN 225 0.84 1.93 0.14 1.50 ~0.14 242 071
APP 2.04 0.25 1.81 -0.16 1.58 -0.70 213 -0.09
QON 2.60 1.02 2.08 0.32 1.61 -0.10 263 1.00
MMN 2,19 0.75 1.90 0.11 145 0.01 241 0.84
5 YMN 207 0.53 2.02 0.64 1.79 0.56 199 0.66
MEN 1.95 0.38 1.88 0.35 1.70 0.36 1.74 033
APP 1.86 0.06 1.70 -0.02 1.56 -0.18 1.69 0.07
QON 2,07 0.46 211 0.50 213 0.86 1.89 0.49
MMN 2.03 0.46 1.85 0.36 1.67 0.27 1.81 0.35
6 YMN 1.82 0.72 1.98 0.44 1.82 0.24 1.87 0.24
MEN 1.80 0.57 20 0.56 1.96 047 1.95 022
APP 1.69 0.56 1.90 041 1.75 0.20 1.81 021
QON 1.86 0,59 1.96 0.48 1.97 0.62 2.05 045
MMN 1.89 0.74 2.19 0.71 217 0.77 2.00 0.28
All YMN 213 0.49 1.96 0.37 1.76 0.35 2.02 0.44
MEN 2.08 033 1.93 0.21 1.77 0.24 1.97 027
APP 2.03 0.26 1.85 0.15 1.65 0.01 1.92 0.19
QON 2.16 0.28 2.00 0.21 1.87 0.39 2.04 035
MMN 213 0.46 1.95 0.31 1.77 0.34 2.00 0.40
Table 6
Weighted-averaged wind speed RMSE and Bias per measured wind speed bin.
Simulation <4ms ' 4-8ms ! 8-12ms ! >12ms !
RMSE (ms ') Bias (ms™ ') RMSE (ms™ ') Bias (ms ') RMSE (ms ") Bias (ms ') RMSE (ms ') Bias (ms™')
YMN 2.09 1.02 1.88 034 1.88 0.06 244 ~0.64
MEN 2.07 0.95 1.84 0.22 182 ~0.18 249 ~0.96
APP 1.96 0.87 174 0.09 1.83 -033 2.54 ~1.00
QON 22 1.10 1.93 0.31 1.86 -0.23 2,52 ~-1.16
MMN 212 1.03 1.89 0.3 1.83 0.02 2.36 -0.76

unstable atmospheric regimes, when convective turbulence is
dominant over mechanical turbulence; oppositely, strong winds
can be associated to stable atmospheric conditions in the absence
of convective turbulence, when mechanical turbulence is damp-
ened and there is little vertical mixing. Although the relation
between strong/weak winds and stable/unstable atmospheric con-
ditions is not straightforward and linear, there are indications that
stronger (weaker) wind speeds are associated with stable (unsta-
ble) atmospheric conditions. Several atmospheric stability classifi-
cations schemes, such as the ones described in Pasquill [72] and
the Pasquill-Gifford-Turner stability classifications | 73| show that,
under the same convective turbulence conditions, increasing wind
speeds are associated to more stable atmospheric regimes. There-
fore, the results depicted in Table 6 are in agreement with what
would to be expected due to the local or non-local formulations
of each tested PBL scheme.

Table 7 shows the same comparison for the RMSE and Bias of
the simulated wind direction.

Table 7 shows that non-local PBL schemes (simulation YMN
and APP) provided the lowest wind direction simulation errors
for wind speeds below 8 ms~', whilst for higher wind speeds
the best scores are obtained by the MMN simulation. The most
striking feature is that all simulations clearly show the highest
RMSE in the presence of low wind speeds, and this error metric
substantially decrease with increasing wind speed. This depen-
dence of the wind direction error on the measured wind speed
is explained by the fact that, in the presence of low wind speeds,
the variation of the wind direction is obviously higher and its
accurate measurement/simulation becomes affected. From the
Bias values it is possible to see that the errors in wind direction
are mainly anti-clockwise for intense wind speeds, while for
low wind speeds they are clockwise.
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Table 7
Weighted-averaged wind direction RMSE and Bias per measured wind speed bin,
Simulation <4ms ! 4-8ms ' 8-12ms ' >12ms '
RMSE (°) Bias () RMSE (°) Bias () RMSE (%) Bias (7) RMSE (%) Bias (7)
YMN 62.21 3.34 27.70 1.89 16,67 015 15.34 1,77
MEN 62.73 2,92 27.88 1.16 16.60 -1.63 15.67 -3.90
APP 62.10 1.39 27.84 -0.05 16.69 -1.18 15.52 -203
QON 63.29 437 29.22 1.40 17.44 -2.13 16.43 488
MMN 63.07 3.84 28.19 220 1653 0.65 15.20 0.88
Table 8
Weighted-averaged wind speed RMSE and Bias errors per measured wind direction bin for each simulation.
Simulation North East South West
RMSE (ms ') Bias (ms ") RMSE (ms ) Bias (ms ') RMSE (ms ') Bias (ms ') RMSE (ms ") Bias (ms ')
YMN 1.85 0.25 214 0.48 2.06 0.44 1.92 0.51
MEN 1.80 0.06 2,13 0.40 207 0.32 1.89 0.36
APp 1.76 -0.06 1.85 021 198 023 1.86 0.32
QON 1.88 0.14 223 0.45 213 0.43 1.95 037
MMN 1.82 0.17 2.14 0.48 2.09 0.45 1.91 0.50

Tables 8 and 9 show the wind speed and direction error varia-
tion as a function of the measured wind direction. The measured
wind direction was binned into four main sectors: North (angles
between 315° and 45°), East (between 45° and 135°), South
(between 135° and 225°) and West (between 225° and 315°).

Analyzing Tables 8 and 9, the South sector shows the highest
errors when compared to the other sectors, both to the wind speed
and wind direction. This can be related to the fact that for this area
of the Iberian Peninsula southerly winds are typically associated
with atmospheric instability episodes with a weak synoptic forcing
|74]. These episodes will enhance the influence of the terrain-
induced circulations and produce winds with a high variability,
which are not properly captured by mesoscale models due to their
limited resolution. Another interesting fact is that all simulations,
in terms of weighted mean values, seem to represent winds com-
ing from North and East with an anti-clockwise wind rotation,
and the inverse behaviour for winds coming from South and West.

From Tables 8 and 9 it is visible that the South and East sectors
appear as the ones with overall higher errors, both for the simu-
lated wind speed and direction. Looking at Fig. 1, it can be seen that
the South sector represent winds coming from land in the offshore
sites Pefias, Villano and Bares, and winds coming from the ocean
for the onshore sites located in area 5. Furthermore, the East sector
represents winds coming from the ocean at the Silleiro offshore
site and winds coming from the ocean in all the remaining onshore
near the coast. Therefore, it is possible that these results reflect a
degradation of the model performance when the wind is coming
from the land/ocean interface. To analyze this issue, the statistics
of Tables 8 and 9 are now calculated for sites in which Southerly
winds represent flows coming from the land/ocean interface
(Penias, Bares, Villano and onshore stations 9-13) and for sites

where Easterly winds represent winds coming from the land/ocean
interface (Silleiro and onshore sites 1, 2, 7, 8).

From Table 10 it becomes clear that in sites where Southerly
winds represent winds coming from land/ocean the simulation
errors are substantially higher, both for the wind speed and
direction.

Similarly to what was seen in Table 10, Table 11 shows that in
sites where Easterly winds represent winds coming from land/
ocean the simulation errors are substantially higher for the simu-
lated wind speed and direction. The highest RMSE for the wind
direction are still seen for the South sector, which is related to
the southerly weak synoptic winds over the Iberian Peninsula.
However, for the wind speed the highest RMSE values are clearly
seen for the East sector. Therefore, results strongly suggest that
the model has a higher difficulty in accurately represent sea-land
circulations.

3.5. Weibull PDF comparison and potential wind energy production
estimates

Weibull PDFs of the measured and simulated wind data are ana-
lyzed and depicted in Fig. 4. Due to the high number of sites con-
sidered and to the fact that the PDFs are similar in all sites, only
differing in the fact that the model under- or overestimates the
wind speed, only 2 sites are shown: one site where the model
tends to overestimate the wind speed (as an example, onshore site
9 was chosen) and one site where the model tens to underestimate
it (onshore site 2 was selected).

Bearing in mind that Weibull distributions, as with any statisti-
cal distribution, are merely cumulative and do not take into
account the temporal simultaneity of the measured and simulated

Table 9

Weighted-averaged wind direction RMSE and Bias errors per measured wind direction bin for each simulation.
Simulation North East South West

RMSE (°) Bias (*) RMSE (°) Bias (%) RMSE (*) Bias (%) RMSE (°) Bias (°)

YMN 31,51 —0.80 37.75 ~-2.64 49,03 7.53 33.64 4.03
MEN 3225 -1.53 38.03 -2.93 47.49 5.64 34,61 297
APP 31.88 ~2.49 37.18 -3.74 48.78 5.82 3412 2.12
QON 33.70 0.08 39.32 -2.38 47.16 536 35.44 1.49
MMN 3222 ~0.92 38.95 _2.08 49.15 9.30 33.56 459

5
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Table 10
Weighted-averaged wind speed and direction RMSE per measured wind direction bin for each simulation in sites where Southerly winds represent winds coming from the land/
ocean interface (Pefas, Bares, Villano and onshore stations 9-13). The highest errors are in bold and in italic for guidance.

Simulation Morth East South West
RMSE (ms™ ') RMSE () RMSE (ms ') RMSE (°) RMSE (ms ™) RMSE () RMSE (ms ') RMSE (°)
YMN 1.79 29.51 2.05 35.62 212 52.09 1.93 32.30
MEN 1.69 30.57 1.98 36.18 212 49.46 1.88 32.70
APP 1.64 30.06 1.82 34.21 2.09 52.07 1.84 32,67
QON 1.81 33.99 212 3849 228 46.58 1.94 3230
MMN 1.72 30.33 1.95 37.03 217 51.00 1.90 31.56
Table 11

Weighted-averaged wind speed and direction RMSE per measured wind direction bin for each simulation in sites where Easterly winds represent winds coming from the land/
ocean interface (Silleiro and onshore sites 1, 2, 7, 8). The highest errors are in bold and in italic for guidance.

Simulation Morth East South West
RMSE (ms ') RMSE (°) RMSE (ms ') RMSE (°) RMSE (ms ') RMSE (%) RMSE (ms ') RMSE (%)
YMN 1.88 26.76 2.18 36.63 1.86 44.77 1.93 35.19
MEN 1.84 2791 217 36.02 1.87 43.87 1.86 36.04
APP 1.87 27.73 1.95 36.71 1.78 45.23 1.90 36,51
QQN 1.89 29.78 2.37 38.71 1.91 44.42 1.89 3748
MMN 1.81 26.79 220 38.96 1.84 46.68 1.88 3477
9 Table 12
i Weibull PDFs parameters, mean and most probable wind speed, wind energy flux
4k deviations and wind speed bias averaged for all stations, using absolute values.
12k i Area Simulation A (%) k(%) Un(%)  Uppw (%) Prx (%)
_| N Offshore  YMN 75 40 7.1 11.8 15.0
g MEN 6.4 29 6.2 9.7 13.4
T, APP 7.1 28 6.8 10.1 15.5
5 QQN 5.6 5.7 54 1.0 7.8
E st MMN 8.8 53 8.6 14.1 16.6
4} Onshore YMN 8.1 4.8 8.2 8.5 273
' MEN 6.8 48 7.0 7.1 214
2t APP 4.9 5.2 4.9 5.0 131
i ) . . ) . . . . QQN 8.0 6.4 8.3 9.6 24.0
o z 4 5 8 10 1z 14 15 @ 2 =22 24 MMN 7.0 43 7.1 73 22.6
Wind speed (m.s") All sites  YMN 7.8 48 7.7 103 212
MEN 6.6 a3 6.6 8.6 17.4
z
16 APP 6.0 43 59 7.6 143
Measured QQN 6.8 6.1 6.8 10.4 15.9
== MMN 7.9 49 7.8 10.8 19.6
= MEN
——ApP
- QoN
# L
E the wind speed, the opposite effect occurs: the model underesti-
E- mates the frequency of strong wind speeds and overestimates
= the frequency of intermediate wind speeds, leading to an overall
underestimation of the wind speed.
The Weibull PDFs A and k parameters, mean wind speed (Ug,),
most probable wind speed (Up,) and wind energy power flux
- - > L e ————— (Prux) percentage deviations of each simulation when compared

to observed data, are shown in Table 12 in the form of the average
values (using absolute values for each simulation and each site).
According to Table 12, for the offshore group simulation QQN is
the one with the A parameter, mean wind speed and wind power
flux closest to the ones obtained from measured data, while simu-
lation APP shows the lowest deviations in terms of the k parameter
and simulation MEN the lowest most probable wind speed. For the

Wind speed (m.s™')

Fig. 4. Weibull PDF curves for onshore sites 9 (upper panel) and 2 (lower panel).

wind speed, the simulation with lower errors related to the mean
state of the wind speed tends to show the Weibull PDF curve clos-

est to the observed one. In all sites where the model overestimated
the wind speed (shown as example station 9), there is a visible
shift of the simulated PDFs to the right side of the wind speed axis
relatively to the observed PDFs, meaning that low wind speed fre-
quencies are underestimated by the model while strong wind
speed frequencies are overestimated by the simulations. The com-
bined effect of these inaccuracies produces the overall wind speed
overestimation tendency. In sites where the model underestimated

onshore group, the lowest deviations of the A parameter, mean
wind speed and wind power flux are obtained with simulation
MEN, while the k parameter has its lowest deviation value for sim-
ulation MMN and simulation APP shows no deviations in terms of
the most probable wind speed. However, the average deviations
considering both onshore and offshore sites show that simulation
APP is the one with the best performance for all parameters,
including the wind power flux.
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Combining the information presented in Tables 3 and 12 it can
be concluded that simulation APP is, globally, the simulation with
the lowest magnitude of errors. For the wind speed, it shows the
lowest RMSE, STDE, Bias, Weibull parameters, mean and most
probable wind speed and wind power flux deviations and higher
correlation coefficients. The only exception is for offshore sites in
what is related to the mean state of the wind speed and, conse-
quently, for the wind power flux, where simulation QQN shows
the lowest errors. The choice of the PBL-SL parameterization
schemes in wind simulation applications can lead to significant dif-
ferences in the near surface wind simulation results, particularly in
terms of wind energy production estimates. The average results
show improvements in the wind power flux estimates, and
although not shown in Table 12, in some sites the choice of a given
PBL parameterization scheme can reduce the deviations towards
measured data from 30-40% to 5-10%, which is very significant
for wind energy agents.

4. Conclusions

This work was conducted with the main goal of analyzing the
WRF model wind simulation sensitivity to the use of different
PBL and SL parameterization schemes, to identify which one of
these PBL-SL parameterization sets is able to produce simulated
winds closer to the observed ones. According to the results pre-
sented in this study, the choice of the PBL-5L schemes to use in
wind simulation applications can lead to significant differences
in the results, particularly in terms of wind energy production esti-
mates. Although no major differences are seen between the simu-
lations in terms of statistical analysis, in terms of potential wind
energy production estimates the differences between the simula-
tions are not negligible, and the choice of the PBL-SL scheme can
greatly reduce the error in terms of wind power flux estimates.
The expected energy production is highly sensitive to the local
wind regimes and an increase in the wind speed and/or direction
simulation accuracy, even if apparently not significant, can greatly
improve the expected energy production estimates in assessment
studies. In the particular case of offshore sites, wind direction is
also of great importance in the wind energy production output as
it will impact on the losses due to turbine wakes, which have a
higher weight on overall production offshore than onshore, due
to the reduced dissipation from lower offshore turbulence levels
and bigger wind turbine dimensions.

Among the different PBL-SL parameterization sets tested, the
simulation that used the ACM2-PX PBL and SL schemes showed,
globally, the best statistical scores and wind characteristics closer
to observed wind data, including the estimates of the wind power
fluxes. The fact that the ACM2 PBL scheme combines features of
local and non-local closure schemes and also the fact that the PX
LSM scheme provides a better parameterization of the surface
meteorology proved to be important in the model wind simulation
performance. This parameterization set showed the best perfor-
mance mainly in terms of the wind temporal variability accuracy
(lower RMSE, STDE and higher correlation coefficients). Also for
the wind mean state (Bias, Weibull parameters, mean wind speed
and wind power flux) it was the one with the best error scores but
here only for onshore sites. For offshore sites, the PBL parameteri-
zation scheme QNSE yielded the most accurate results for these
statistical metrics.

Considering the lack of available studies that test the use of sev-
eral PBL schemes in the near surface wind mesoscale simulation
(both onshore and offshore) for the geographical areas here consid-
ered with at least one complete year of simulated wind datasets,
the findings of this work can be very valuable for meteorological/
oceanographic modelling studies that consider long term
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simulations, especially if employed in areas located inside or in
the vicinity of the area under scope. These findings are also partic-
ularly interesting for geographical areas where measured wind
data are not available, or are insufficient for the desired purposes,
and NWP modelling is, therefore, necessary to assess the wind
energy resource of potential sites for the installation of wind farms.
For offshore areas, this is precisely the case of Portugal, where
presently no oceanic wind measurement campaigns are under
operation and, therefore, no observed offshore wind data is avail-
able. Although it is expected that the close dependence of each
PBL and SL scheme performance with the surrounding synoptic
conditions and atmospheric stability can lead to different results,
the fact that this focus on a complete meteorological/weather
cycle, which includes all the different synoptic conditions, for a
considerably wide geographical area offers a solid base of confi-
dence that the conclusions drawn from this work can be consid-
ered to other periods and/or geographical areas.
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Chapter 5 — Comparison of NWP
modelled and satellite-derived offshore
wind data with in situ offshore wind

measurements

Unlike onshore wind measurements, which are invariably collected by wind measuring
masts or meteorological stations, offshore winds are also measured by satellites orbiting
the Earth. These offshore wind measurements derived from satellite observations have
been widely used in the recent past in several meteorological, oceanographic and also
offshore wind energy applications. However, it is recognized that these satellite derived
offshore wind measurements are far from being as accurate and reliable as in situ
measurements collected by wind measuring instruments, due to the fact that they show

several and often significant error sources.

Having the WRF model optimised in what is related to the initial/boundary conditions and
PBL parameterization options for the modelling of offshore winds, it becomes pertinent to
assess of this optimised NWP model is able to surpass the performance of satellites in
representig offshore winds. To this end, offshore wind simulations obtained from the WRF
model, using its optimised configuration, are compared to offshore wind measurements

collected by satellites.
5.1 — Determination of the best satellite offshore wind product

One of the most famous and widely used satellite derived offshore wind data sources for
meteorological, oceanographic and wind energy applications is National Aeronautics and

Space Administration (NASA) SeaWinds scatterometer installed aboard the QuikSCAT
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satellite platform (henceforth simply referred to as QuikSCAT). This scatterometer was
selected as source of satellite derived offshore wind data. Due to the fact that QuikSCAT
wind data is available in several different products, which differ in the degree of data
processing, it becomes important to first determine the QuikSCAT product with the best
accuracy when compared to in situ measured offshore wind data. To this end, a comparison
of the several official QuikSCAT products offered by NASA Physical Oceanography
Distributed Active Archive Centre (PO.DAAC) was performed by comparing their data to
in situ measured offshore winds. This research is presented in the following paper, in
which is included the methodology followed, area under study, QuikSCAT products tested,
observed data used to compare the simulations, introductory notes and state of the art.
Although this paper also considers another offshore wind database (the Cross Calibrated
Multi-Platform Ocean Surface Wind Vectors, CCMP) in the comparison, the most relevant
finding of this article for the present thesis is which QuikSCAT product shows higher
accuracy in representing offshore winds. This article can be consulted in the link:

http://www.sciencedirect.com/science/article/pii/S0034425713001983

In section 5.2 a wider selection of alternative sources of offshore wind data (including
CCMP) is compared to measured offshore winds and with WRF modelled offshore winds
(using its optimised configuration), in order to assess if WRF is able to surpass satellite-

derived and also other alternative sources of offshore wind data.
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ABSTRACT

Ocean surface wind data derived from several QuikSCAT products and the Cross-Calibrated Multi-Platform
(CCMP) project were compared to wind speed and direction measurements, in order to assess which one of
these databases has higher accuracy and ability to describe the local wind regime characteristics. For this, data
from QuikSCAT (swath data from L2B 25 km and [2B 12,5 km slice composites, together with gridded L3) and
CCMP were compared with measurements taken from five buoys located along the |berian Peninsula coast.
The results presented in this work show that QuikSCAT products have their strength in representing the tem-
poral variability of the wind speed (higher correlation coefficients and lower RMSE and STDE) and the mean
state of the wind direction (lower biases). Although no major differences were detected among QuikSCAT
products, the high-resolution database (12.5 km) was the one with the best overall scores. However, CCMP
is able to bring significant improvements in terms of wind direction temporal variability and wind speed
mean state, CCMP also showed its capability to partially mitigate some of QuikSCAT's known problems, main-
ly those related to QuikSCAT systematic tendency to overestimate the wind speed and land masking effects.
In addition, CCMP consists in a gridded dataset with a higher temporal sampling and complete data availabil-
ity when compared to QuikSCAT, allowing this database to be clearly the one with a better ability to charac-
terize the wind regimes measured by the buoys in terms of wind speed frequency distributions.

These features can render CCMP an interesting ocean wind database for offshore wind energy assessment
studies, where wind speed mean state accuracy plays the key role, and also for meteorological, oceanic and
climate modelling applications where gridded wind data with good temporal sampling and data availability

is vital to force numerical simulation models,

1. Introduction

The knowledge of the surface wind fields over the ocean is a key
factor for a wide set of academic and industrial activities (Carvalho,
Rocha, Gomez-Gesteira & Santos, 2012; Risien & Chelton, 2006).
Ocean surface wind data (typically defined at 10 m above sea surface
level) is crucial in climatic, meteorological and oceanographic studies
in order to build ocean surface climatologies (Atlas, Ardizzone, &
Hoffiman, 2008; Atlas, Hoffman, Ardizzone, Leidner, & Jusem, 2009)
and to run atmospheric/oceanic models, being one of the main
parameters to realistically describe the oceanic forcing fields, air-sea
interactions, and oceanic and atmospheric circulation regimes. Errors
in the representation of the local wind field will distort the model
forcing processes and can have a severe influence in the oceanic and
atmospheric modelling results (Myers, Haines, & Josey, 1998; Ruti,
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Marullo, D'Ortenzio, & Tremant, 2008). Furthermore, accurate ocean
wind data is presently very valuable in the context of offshore wind
energy resource assessment and offshore wind power production es-
timates, whose growth entered an exponential stage during the last
decade and rely on an accurate knowledge of the local wind resource
in terms of both wind speed and direction, Therefore, it is crucial to
use accurate inputs of wind speed in wind resource assessment, as
the predicted power is proportional to the cube of the wind speed.
Data regarding ocean surface wind typically comes in the form of
observations (from buoys, ships, etc.), usually taken at a single point
and/or in a limited time window. Due to their high spatial and tempo-
ral variability, these observations may not be representative of the
wind regime over a medium/large spatial area and/or time span
(Risien & Chelton, 2006). Moreover, these measurements are current-
ly very sparse, both in time and space, and often suffer from long pe-
riods of missing and/or invalid data. Therefore, observational data is
insufficient to accurately describe localized wind regimes in ocean
areas. This lack of reliable, space and time consistent and representa-
tive ocean surface wind information, together with the growing need
to have a preliminary knowledge of the ocean wind fields, raises the
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importance of investigating alternative ocean surface wind databases.
In the recent past, the development of satellite-derived wind data
allowed for the first time the observation of the ocean surface wind
field on a near-global scale showing their utility in the ocean surface
wind assessment, both for climatic studies and offshore wind energy
projects (Hasager et al,, 2007), Until now, the best results have been
obtained with scatterometers that consist in microwave radars that
derive the sea surface wind field from sea surface roughness.
Among the several existent scatterometers, the NASA SeaWinds
scatterometer installed aboard the QuikSCAT satellite platform
(henceforth simply referred to as QuikSCAT) is one of the most popu-
lar in terms of ocean wind data sources. A considerable number of
studies have been performed aiming to assess the accuracy of
QuikSCAT derived wind data, mainly in terms of comparison with
measured winds (eg: Ebuchi, Graber, & Caruso, 2002; Moore,
Pickart, & Renfrew, 2008; Penabad et al,, 2008; Pensieri, Bozzano, &
Schiano, 2010; Pickett, Tang, Rosenfeld, & Wash, 2003; Ruti et al,,
2008; Sanchez et al, 2007; Satheesan, Sarkar, Parekh, Ramesh
Kumar, & Kuroda, 2007; Tang, Liu, & Stiles, 2004). These studies con-
cluded the success of QuikSCAT in achieving its mission requirements,
proving its utility in climatic, meteorological, oceanographic and off-
shore wind resource assessment studies.

However, QuikSCAT performance is known to be highly affected
by the presence of heavy rain (above 2.0 km.mm.hr") that artificially
increases the surface roughness (Portabella & Stoffelen, 2001), which
disturbs the backscatter parameter resulting in a misrepresentation of
the real wind vectors (overestimation of the surface winds and wind
direction alignment across the swath). Moreover, the geophysical
model function developed for NSCAT (Wentz & Smith, 1999) has
been adjusted for SeaWinds (Lungu, 2001). The model function is
the most accurate for wind speeds in the range 5-12 m.s™'. Therefore,
QuikSCAT data quality is highly diminished in the presence of low
winds (below 5 m.s™'), because low wind speeds produce little, or
none at all, backscatter and under these conditions the ocean surface
acts more like a smooth reflector than a scatterer, becoming difficult
to accurately predict the wind vectors. Furthermore, strong winds
(above 25 m.s™') are generally underestimated due to the ocean sur-
face roughness threshold. In addition to these limitations, QuikSCAT
shows a 25-30 km land masking effect that negatively affects the rep-
resentation of the spatial and temporal variability of coastal winds
(Furevik, Sempreviva, Cavaleri, Lefévre, & ranserici, 2010). Finally,
QuikSCAT mission ended in November 23, 2009 due to problems
with the SeaWinds equipment. After this date, there is no ocean sur-
face wind data available from QuikSCAT.

The recently released Cross-Calibrated Multi-Platform Ocean Sur-
face Wind Vectors (CCMP) clearly appears as an interesting and
promising alternative/complement to QuikSCAT (and other satellites)
ocean surface wind data source, This database uses as background a
first guess analysis of U and V gridded wind vectors and then assimi-
lates multiple sources of observed data (satellites, ships, buoys, etc.),
all combined in a 6-hourly globally gridded analysis of ocean surface
winds, Due to the amount of data included in the CCMP grid, together
with the quality control of all the assimilated data and a globally
gridded first guess background, it is expected that CCMP can improve,
at least to some extent, the abovementioned QuikSCAT limitations.
However, as far as we know, there is no published literature that com-
pares CCMP data, either with conventional measurements (buoy, ship,
etc.) or with other sources of satellite-derived ocean wind data (namely
QuikSCAT), nor literature that validates and explores CCMP data in
terms of their quality and eventual limitations.

The aim of this paper is to assess and compare the performance of
QuikSCAT and CCMP derived ocean surface wind data in terms of its
accuracy, comparing them with ocean surface wind measurements
collected by buoys located along the Iberian Peninsula coast (Galician
coast and Gulf of Cadiz). This comparison will allow the assessment of
which one of these ocean surface wind data sources describes more

accurately the local wind regime at the selected buoy locations. To
achieve this goal, one complete year (in the present case, 2008) of
wind measurements from four buoys located in the West and North
Galician coast and one buoy placed at the Gulf of Cadiz will be com-
pared to the same period of wind data from QuikSCAT and CCMP.

2. Data and methodology
2.1. Satellite wind data

2.1.1. QuikSCAT Ocean Surface Wind Vectors

The NASA SeaWinds scatterometer, aboard the QuikSCAT satellite
platform, is an active microwave scatterometer that measures wind
vectors at a height of 10 m above sea level (as.l.) at neutral air-sea
stability conditions (Chelton & Freilich, 2005). Detailed description
and information regarding these equipments can be found in Hoffman
and Leidner (2005), and also in NASA's Jet Propulsion Laboratory
Physical Oceanography Distributed Active Archive Centre (PO.DAAC)
website (http://podaac.jpl.nasa.gov/OceanWind/QuikSCAT).

QuikSCAT wind products are available in three different levels that
differ in the degree of data processing: Level 1B, Level 2A & 2B and
Level 3. For a detailed description about the differences between
these products, the reader is referred to Dunbar et al. (2006). The
Level 2B (L2B) swath data and the Level 3 (L3) gridded data are the
QuikSCAT products most often used by the scientific community.
The L2B products are the most refined ones, while the L3 dataset is
gridded, making it a standard product that can easily be used in
many scientific applications, especially in oceanographic studies
{Pensieri et al., 2010; Ruti et al., 2008). L2B products are made avail-
able by PO.DAAC in two different forms: the L2B ocean wind vectors
in 25 Km swath, and the L2B ocean wind vectors in 12.5 km slice
composites. For the latter, its increased sampling resolution enables
users to obtain wind vectors 10 km closer to shore when compared
to the L2B 25 km dataset, reducing the distance of valid measure-
ments from the coastline and making this product of particular inter-
est in studying near-shore ocean winds. In the published literature,
only the study performed by Sharma and D'Sa (2008) compared
the different QuikSCAT products used in this work (L2B 25 km,
L2B 12.5 km and L3), concluding that the L2B products indicated a
better accuracy than the L3. The QuikSCAT L2B 25 km data used
in this work is described and available at (http://podaac.jpl.nasa.gov/
dataset/QSCAT_LEVEL_2B_V2), the 12B 12.5 km at (http://podaac.jpl.
nasa.gov/dataset/QSCAT_LEVEL_2B_COMP_12) and the L3 at (http://
podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_3_V2). According to Hoffman
and Leidner (2005), a careful quality control is vital mainly to what is
related to data affected by rain and by ambiguity removal issues. As for
ambiguity removal issues, the L2B products include two additional scien-
tific datasets: the “wind speed selection” and the “wind dir selection”,
which contain the final output of the wind retrieval/ambiguity removal
processing using the Direction Interval Retrieval with Threshold Nudging
(DIRTH) algorithm. These two datasets were used in this study, and
furthermore all QuikSCAT data marked with rain flags or as null/invalid
were discarded.

2.1.2. CCMP Ocean Surface Wind Vectors

This dataset was derived under the CCMP project and provides
a consistent, gap-free long-term time-series of ocean surface wind
vector analysis fields from July 1987 through June 2011. It consists
of a 6-hourly gridded ocean surface winds analysis, with a spatial
resolution of 0.25 x 0.25° in latitude and longitude. CCMP uses as a
starting estimate (or background) field the ECMWEF Reanalysis (ERA-40)
for July 1987 until December 1998, and the ECMWF Operational Analy-
sis from January 1999 onward. CCMP includes cross-calibrated satellite
winds obtained from TRMM TMI, QuikSCAT, QuikSCAT (SeaWinds),
WindSat, SSM/1, SSMIS, AMSR-E and other satellites. All the considered
wind data are referenced to a height of 10 m a.s.l. considering neutral
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air-sea stability conditions. Detailed information about this dataset can
be found on Atlas et al. (2011).

The CCMP Level 3 dataset used in this work, which has been exten-
sively validated by the NASA's Ocean Vector Winds Science Team, is de-
scribed and available at the NASA's Jet Propulsion Laboratory PO.DAAC
website (http://podaac.jpl.nasa.gov/dataset/CCMP_MEASURES_ATLAS
L4_OW_L3_0_WIND_VECTORS_FLK). CCMP records include the 12
AM., 6 AM., 12 P.M. and 6 P.M. time instants.

2.2. Measured wind data

Measured wind data taken from five oceanographic buoys moored
off the Galician northern and western coast and the Gulf of Cadiz
were considered. These buoys, depicted in Fig. 1, are operated by the
Puertos del Estado Spanish Agency and Table 1 presents their main
characteristics. These five buoys measure hourly wind speed and di-
rection at 3 m a.s.l.. The datasets of the five considered buoys cover
the period from January 1, 2008 to December 31, 2008.

Fig. 1 and Table 1 show that some of the buoys are placed in the
vicinity of the satellite shadow area (25-30 km), being the Pefias
buoy the only one located clearly inside this area while the remaining
buoys are located outside this zone.

Table 1
Main characteristics of the considered buoys.

Station Latitude Longitude Distance to coast
Pefias 43" 45'N 6" 9" 36"W ~20 km
Bares 44° 3 54" N 7375 W ~32 km
Villano 43" 30" 'N 9" 12' 36" W ~30 km
Silleiro 42° 7' 48" N 9"23 24" W ~40 km
Cadiz 367 28'37"N 36" 28" 37" N ~55 km

As pointed in Sections 2.1.1 and 2.1.2, QuikSCAT and CCMP winds
consist in equivalent neutrally stable winds. These remotely retrieved
winds are mainly from microwave sensors (radiometer, altimeter and
scatterometer), which are sensitive to the ocean surface roughness
than the wind speed due to atmospheric stratification. Therefore, these
sensors are calibrated to an equivalent neutral wind at a reference
height of 10 m above sea surface (Liu & Tang, 1996; Singh, Parekh, &
Attada, 2013; Verschell, Bourassa, Weissman, & O'Brien, 1999). These
equivalent neutral winds are the winds that would exist if the atmo-
spheric boundary layer is neutrally stratified (Chelton, Schlax, Freilich,
& Milliff, 2004), while the measured winds are collected at 3 m as.l.
and they are stability-dependent. Therefore, to compare buoy measure-
ments with QuikSCAT and CCMP, the buoy wind speeds need to be
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Fig. 1. Area under scope, The Iberian Peninsula with the position of the buoys.
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converted to equivalent neutral winds at a height of 10 m as.l.. To per-
form an extrapolation of real stability-dependant winds to equivalent
neutral winds, one of the most accurate methods is the one proposed
by Liu and Tang (1996), which takes into account the effects due to dif-
ferences in the atmospheric stability. However, this requires the knowl-
edge of air and sea surface temperatures, pressure and relative humidity.
Since the whole of these data are not available for the buoys considered
here, the logarithmic method proposed by Peixoto and Oort (1992) will
be used to extrapolate the buoy winds from 3 to 10 m a.s.l.. This method,
which does not include effects due to differences in atmospheric stabil-
ity, provides the wind speed at a height z following:

o (0 n(Z) ()

In this expression, Uy is the wind speed at a height z, z,, is the mea-
surement height and z; is the roughness length. A typical oceanic value
for 2o of 1.52 x 10~* m can be assumed, according to Peixoto and Oort
(1992). In the impossibility of using the most accurate method to
extrapolate the 3 m asl. measured winds to 10 m a.sl. equivalent
neutrally stable ones (the method proposed by Liu & Tang, 1996), it be-
comes important to assess the possible differences between these two
methods, which basically differ in if whether they account or not for
the effects due to differences in atmospheric stability. Mears et al.
(2001) made a comprehensive and detailed analysis on the differences
in using the Liu and Tang (1996) or the logarithmic method in
converting stability-dependant measured buoy winds from 3 m as.l.
to equivalent neutrally stable winds at 10 m a.s.l, considering several
buoys scattered around the world and several years. It was concluded
in this study that the Liu and Tang (1996) correction is typically a few
tenths of a meter per second higher (the study reports an average
value of 0.12 m.s™') than the logarithmic correction. Under unstable
conditions, the Liu and Tang (1996) corrected winds are higher than
logarithmic corrected winds, and for stable conditions the opposite is
seen. For neutral conditions, they are the same. Therefore, the positive
mean difference of 0.12 m.s™' of the Liu and Tang (1996) corrected
winds relatively to the logarithmic corrected ones are due to the fact
that over most of the global ocean there is a tendency for the atmo-
spheric boundary layer to be neutral/slightly unstable. Also Ruti et al.
(2008) made a more simple comparison between these two methods,
concluding that the main difference between these two methods is ob-
served only in the presence of strong winds ( typically above 15 ms™').
Even in these conditions, the logarithmic wind extrapolation differs
from the Liu and Tang (1996) one by less than 0.5 m.s~'. Given this,
it is then possible to assume that the application of the logarithmic
method will not introduce significant errors. Considering the extrapo-
lated winds to 10 m as.l., the local wind regimes described by each
buoy for the year of 2008 are presented in Carvalho, Rocha and
Gomez-Gesteira (2012), In this study, it is visible that these coastal
winds tend to follow the local topography. These tendencies were
reported for the Galician coast by Alvarez, Gomez-Gesteira, deCastro,
and Dias (2008); Alvarez, Gomez-Gesteira, deCastro, Gomez-Gesteira,
and Dias (2010) and Gomez-Gesteira, Moreira, Alvarez, and deCastro
(2006), and for the Gulf of Cadiz by Jungclaus and Mellor (2000), and
Peliz, Dubert, Marchesielo, and Teles-Machado (2007).

2.3. Error statistical and comparative analysis

In the present study, two distinct kinds of comparisons were
performed. First, a statistical analysis was conducted focusing on
record-by-record accuracy of the several databases, considering only
the simultaneous and valid records shared by all databases. QuikSCAT
satellite follows a sun-synchronous orbit producing two records per
day (corresponding to the ascending and descending passes, in UTC
time reference), CCMP provides four records per day (corresponding
to the hours UTC 0, 6, 12 and 18 of each day) and the buoys measure

the wind on an hourly basis (also using UTC reference). Analyzing
QuikSCAT L2B and L3 valid wind data for the locations under study,
it was seen that about 90% of their records correspond to 6 A.M.
(ascending pass) and 6 P.M. (descending pass). Therefore, for this com-
parison only the 6 AM and 6 P.M. records of the buoys, CCMP and
QuikSCAT were selected, in order for all datasets will share the same
temporal collocation and sampling rate. This analysis, presented in
Sections 3.1 and 3.2, assesses the quality of the simultaneous records,
both in terms of spatial and temporal accuracy. In Section 3.1, several sta-
tistical parameters were considered. The three most common statistical
parameters were used to evaluate the wind data: the Root Mean Squared
Error (RMSE),

18 2] /e
RMSE = [Ng(s,) ] (2)
where
0, = 6 —67" (3)

represents the deviation between the QuikSCAT/CCMP wind speed (6*)
and the respective observed wind speed in the buoy (6°%), being N the
total number of pairs of simulation/observed records. For the wind direc-
tion, which is a circular variable and not a linear one, " takes a different
expression because the absolute deviation of the wind direction cannot
exceed 180° in module. For this case, #' is given by

6, = (67 —01") « [1—-360/ |6y 6| | if |6 —6"|>180° (@)
The bias, defined as
18
Bias = — E 0, (5)
N =1

And the Standard Deviation of the Error (STDE), given by
¥ el I -
STDE = n(o,.) = [RMSE3~Bfas"] /a (6)

Furthermore, also the correlation coefficient (R?*) between QuikSCAT/
CCMP data and observed records was used. While the RMSE, STDE and
R* mainly assess if the QuikSCAT/CCMP data is able to represent the ob-
served winds with temporal accuracy (this is, in accurately representing
the temporal variability of the wind), the bias evaluates the data tenden-
cy and is more related to differences in the mean state of the wind field,
this is, if QuikSCAT/CCMP data have a tendency to over/underestimate
the measured wind speed/direction. In addition to the aforementioned
statistical analysis, QuikSCAT and CCMP wind speed/direction error de-
pendence with the observed wind speed/direction was also assessed.
These results will be presented in Section 3.2, and the aim of this section
is to conclude if the error associated to the satellite derived wind data is
related to a particular wind speed/direction.

Second, in Section 3.3 a different analysis will be performed. This sec-
tion aims to assess which one of the databases is able to offer a character-
ization of the buoys local wind regimes closer to reality. The closest
characterization of the buoys local wind regimes is offered, obviously,
by the buoy measurements. Not only because of the fact that the buoys
measure the real wind, but also because the anemometers installed in
the buoys measure the wind every hour. In order to assess which one
of the databases (QuikSCAT or CCMP) provides the characterization of
the local wind regimes closest to the real one (described by buoy mea-
surements), all the valid data records of each one of the databases will
be considered instead of just simultaneous records as in Sections 3.1
and 3.2. In order to evaluate QuikSCAT and CCMP ability to describe the
buoy locations local wind regimes, in what is related to the wind speed
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(U), Weibull probability density functions (PDF's) will be used. The use of
Weibull PDF in QuikSCAT derived wind speed analysis was performed by,
as an example, Liu, Tang, and Xie (2008). The Weibull PDF, Wy, is pro-
vided by (10), where A and k represent the Weibull PDF parameters:

o
Wcm'—'g(g) e () (7)

and the most probable value of U (U,,1,) can be calculated from the first
derivative of Eq. (7):

k—1\'/i
Upmq‘) = A(_k_) (8)

In this section, the temporal accuracy of the databases will not be
reflected in the results, since they are presented in terms of a cumula-
tive frequency distribution that does not reflect temporal coherence. A
more detailed description about these equations and statistical method-
ology can be found on Carvalho et al. (2012).

The closest QuikSCAT L3 and CCMP grid points to the buoy locations
were selected. For the L2B swath data, which do not consist in gridded
data and each individual swath may or may not contain the buoy loca-
tions, it was also considered the closest point to the buoy locations at a
maximum distance of 25 km, for the L2B 25 km database, and 12.5 km,
for the L2B 12.5 km product.

3. Results and discussion
3.1. Statistical comparison

In this section, the RMSE, Bias, STDE and R? are computed between
the buoys and the respective QuikSCAT and CCMP data. Table 2 displays
the results, where N is the number of simultaneous and valid pairs of 6
AM. and 6 P.M. records between QuikSCAT L2B 25 km (designated as
QL2B-25), QuikSCAT L2B12.5 km (designated as QL2B-12.5), QuikSCAT
L3 (designated as QL3), CCMP and the respective buoy.

Considering the average error values for all stations, weighted by
the number of records at each station, it is visible that for the wind
speed all QuikSCAT databases showed higher R?, lower RMSE and

STDE when compared to CCMP, which clearly showed the lowest bias.
Among QuikSCAT databases, and although no major differences were
found, the L2B-12.5 was the one with the best overall scores in terms
of RMSE and STDE, being that the lowest bias was obtained with
QL2B-25. For the wind direction, the opposite is seen: CCMP presents
the highest R?, lowest RMSE and STDE, while QL2B-12.5 presented the
lowest bias. These obtained values of RMSE and Bias for QuikSCAT data-
bases are in line with the scores obtained in the studies referenced in
Section 1 (Ebuchi et al., 2002; Moore et al., 2008; Penabad et al., 2008;
Pensieri et al, 2010; Pickett et al., 2003; Ruti et al., 2008; Sinchez
et al., 2007; Satheesan et al., 2007; Tang et al., 2004). According to
these error scores, QuikSCAT products showed the lowest errors in
what is related to the representation of the temporal variability of the
wind speed (higher R?, lower RMSE and STDE) and the mean state of
the wind direction (lower biases). However, CCMP clearly shows the
best results in terms of wind direction temporal variability and wind
speed mean state. CCMP uses as a first guess reanalysis and analysis
fields with a resolution coarser than its own data (both the ERA-40
reanalysis and ECMWEF operational analysis are available at a horizontal
resolution of around 1 °, both in latitude and longitude). This can intro-
duce a kind of “phase lag"” on CCMP data, due to eventual interpolation
errors from the coarse first guess fields to the finer CCMP resolution
(0.25° both in latitude and longitude).

For all QuikSCAT databases the weighted mean biases for the wind
speed are positive, and even analyzing the wind speed bias scores for
each buoy individually they are always positive, showing a tendency
for QuikSCAT to overestimate the wind speed. For CCMP the weighted
mean bias and the individual biases for each buoy are relatively small,
but also with a positive signal. The exception is for Silleiro buoy, where
CCMP shows a negative bias. For the wind direction, there is a tendency
for the biases to be negative in the Northern Galician coast (Peiias, Bares
and Villano) indicating an anti-clockwise deviation, and positive for the
Western Galician coast (Silleiro) and Gulf of Cadiz, indicating a clock-
wise wind rotation. This feature for the wind direction is common to
both QuikSCAT and CCMP databases.

One important aspect to report is that wind direction errors are
significantly higher than the wind speed ones. Scatterometer wind
vectors are relative to the local ocean current (e.g.: Cornillon & Park,
2001), whereas measured winds are earth-relative. Therefore, the

Table 2
Statistics of the comparison between QuikSCAT, CCMP and buoy wind data.
Station Dataset RMSE Bias STDE R? N
Speed Direction Speed Direction Speed Direction Speed Direction
(ms™) (") (ms") ) (ms™) () (ms) (")
Peiias QL2B-12.5 242 54.86 1.21 —0.96 2.10 54.85 0.85 0.58 144
QL2B-25 2.10 59.41 0.87 —8.49 1.3 58.80 0.88 0.60
2.10 59.83 0.88 —9.21 1.91 59.12 0.88 0.61
ccwp 2.05 51.06 0.04 -2.74 205 50.99 0.83 0.70
Bares QL2B-12.5 1.13 44.60 0.22 -1293 1.11 42.68 0.96 073 138
QL2B-25 1.29 37,50 0.34 —12.28 1.24 3543 095 0.81
QL3 1.29 37.08 033 —12.0 125 35.08 095 0.79
ccmp 1.54 36.31 0.04 —835 1.54 35.34 0.92 0.82
Villano QL2B-125 1.40 44,87 0.50 279 1.31 44.78 0,94 0.84 178
QL2B-25 1.41 40.30 0.60 -1.97 1.28 40,25 0.95 0.86
QL3 1.48 40,12 0.59 =079 1.36 40.11 0.94 0.86
ccmp 1.49 40.81 0.13 1.04 1.48 40.80 0,92 0.89
Silleiro QL2B-125 1.32 57.71 0.26 483 129 57.51 0.95 0.67 125
QL2B-25 1.52 57.62 0.15 7.02 1.51 57.19 092 0.68
QL3 1.45 5892 0.10 4.90 145 58.72 0.93 0.67
ccvp 141 47,36 —0.08 —1.65 1.41 47.33 0.93 0.78
Cadiz QL2B-12.5 1.13 54,80 032 1.32 1.08 54.78 0.96 0.63 118
QL2B-25 1.31 49.35 0.35 9.08 126 4851 0.95 0.73
QL3 1.34 49.13 0.59 B8.45 1.20 48.40 0.95 0.74
ccwp 1.64 4293 0.08 443 1.64 42,70 0.90 0.81
Weighted average Qi2B-12.5 1.50 50.81 052 —0.95 1.39 50.37 0.93 0.70 -
QL2B-25 1.53 48.26 048 ~1.88 1.44 47.50 0.93 0.74
QL3 1.54 4842 051 =215 1.44 47.72 0.93 0.74
ccmp 1.63 43.55 0.05 —-1.49 1.62 4329 0.90 0.80
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wind direction measured by the scatterometer can differ from the
measured wind direction. For these reasons, the errors are expected
to be larger in scatterometer estimates of wind direction than of
wind speed (Chelton & Freilich, 2005). Also in QuikSCAT wind speed
estimation this issue has a non negligible effect: for example, an
8 m.s”! wind over a 1 m.s! ocean current, both flowing in the same
direction, appears to the scatterometer as a 7 m.s™' wind since it is
the wind relative to the surface that generates the capillary waves
(Hoffman & Leidner, 2005). However, considering that the ocean cur-
rents are typically much slower than surface winds, it is not expected
that this issue will introduce large errors in the data.

One striking feature is that all the wind speed statistical scores
(RMSE, Bias, STDE and R?) are clearly worst for Pefias buoy. Note that
this buoy is the one closest to the shore and the only one located inside
QuikSCAT's coastal masking area, indicating that this can be related
with the scatterometers known issues in representing coastal winds
due to land contamination effects. The remaining buoys, which are lo-
cated outside this zone, show significant lower wind speed errors
when compared to Penas. An interesting fact is that CCMP is able to par-
tially mitigate these problems, mainly in what is related to the bias,
since on this statistic this database shows clearly better results than
QuikSCAT. Moreover, CCMP bias scores for Pefas are similar to the
remaining buoys, which imply that land masking effects have less im-
pact in CCMP. Focusing on QuikSCAT databases, it would be expected
that the increased resolution of QL2B-12.5 could bring improvement
to the results, in particular at those buoys closest to shore. Although
this is true, due to the fact that QL2B-12.5 is the one with the lowest
average errors among QuikSCAT databases for the wind speed (the
only exceptions is for the bias), for the buoy closest to shore (Peiias),
QL2B-12.5 is the database with the worst error scores for the wind
speed.

3.2. Satellite-derived wind data error dependence on measured wind
speed and direction

In this section, an analysis of the QuikSCAT and CCMP error varia-
tion with the wind speed bin and wind direction sector is presented,
making use of two different comparisons. Firstly, an analysis of the

QuikSCAT and CCMP wind speed and direction RMSE and Bias varia-
tion with the buoy wind speed is performed. This comparison will
show whether or not QuikSCAT and CCMP wind speed and direction
errors vary with the measured wind speed. This approach is impor-
tant to assess QuikSCAT performance in the presence of different
wind speeds, and to observe if CCMP is able to overcome QuikSCAT
limitations in the presence of low and strong winds. Secondly, a sim-
ilar analysis is performed but now analyzing if QuikSCAT and CCMP
wind speed and direction RMSE and Bias vary with the buoy wind
direction. Tables 3 and 4 show the obtained results for the first described
comparison, in which four buoy wind speed bins were considered: wind
speeds below 4 m.s™', between 4 and 8 m.s™', between 8 and 12 m.s™'
and above 12 ms™',

Taking into account the results displayed in Table 3, globally there
is a tendency for QuikSCAT erraors to be higher in the presence of low
(below 4 m.s') and strong (above 12 m.s™') wind speeds. This was
expected, due to the scatterometers know problems in the presence
of low and strong wind speeds. Moreover, the errors are significantly
higher for strong wind speeds than for low wind speeds. CCMP shows
the highest errors for strong wind speeds, while the lowest are seen
for low wind speeds, mainly in terms of RMSE. The higher errors for
strong wind speeds, present in both QuikSCAT and CCMP data, can
also be related to the fact that this type of winds represents bad
weather situations, which will cause buoy displacing and movements,
associated to high ocean waves and also surface layer distortion
(Ebuchi et al., 2002; Large, Morzel, & Crawford, 1995). For this reason
not only satellite-derived wind data but also buoy measurements of
strong wind speeds must be considered with caution.

Also visible in these results is QuikSCAT systematic wind speed
overestimation, clear in the weighted average values of the bias for
all wind speed bins, and especially for low and high wind speeds.
QuikSCAT positive bias in low wind speeds was also observed in pre-
vious works in the Pacific (Ebuchi et al., 2002) and Indian Ocean
(Satheesan et al., 2007 ) indicating that QuikSCAT performance is sub-
stantially degraded in the presence of low wind speeds, mainly due to
QuikSCAT difficulty in accurately measure the small amount of back-
scatter produced by these weak winds. Contrarily to what is seen for
QuikSCAT, CCMP does not show any clear over or underestimation

Table 3
Statistics of the comparison between QuikSCAT and CCMP wind speed error per buoy wind speed bin.
Wind speed bins <4 ms"' 4-8 mis™! 8-12 ms' =12 ms”’
Station Database RMSE Bias N RMSE Bias N RMSE Bias N RMSE Bias N
(ms™) (ms™) (ms™) (ms™ {ms™") (ms™h) (ms™) (ms™)

Pefias QL2B-12.5 264 1.91 53 221 1.08 53 1.67 0.00 28 3.66 1.59 10
QL2B-25 207 122 214 097 1.50 -025 3.23 1.65
QL3 2.08 123 214 097 1.50 -027 3.19 1.70
ccmp 232 1.07 178 013 212 ~1.61 1.64 —131

Bares QL2B-12.5 1.31 0.69 39 093 —-0.01 44 097 0.02 42 1.60 o021 13
QIL2B-25 1.29 043 137 025 1.10 0.24 1.52 0.73
QL3 1.29 0.44 1.37 025 112 0.20 1.53 0.73
ccmp 1.40 0.60 148 —0.06 1.15 —0.24 275 —0.40

Villano QL2B-125 1.39 0.80 53 133 038 56 135 022 49 1.7 072 20
QL2B-25 1.39 0.83 1.19 0.31 1.48 0.52 1.77 1.03
QL3 1.52 0.90 1.21 029 1.58 0.46 1.75 0.90
ccmp 1.38 0.73 1.59 0.11 1.50 —0.40 1.48 —0.04

Silleiro QL2B-12.5 .19 0.40 63 1.20 0.19 30 1.57 —-0.20 23 1.83 o 9
QL2B-25 143 0.41 1.62 0.24 144 —045 1.87 —038
QL3 1.44 0.40 1.31 0.07 143 ~0.50 1.87 —0.36
ccmp 097 0.33 135 -0 1.76 —0.90 2,63 —0.74

Cadiz QL2B-12.5 1.05 049 48 1.08 022 39 1.29 0.01 22 1.35 0.63 9
QL2B-25 1.02 027 1.15 0.28 192 0.33 143 1.09
QL3 1.22 0.70 1.35 033 1.52 0.35 1.44 0.80
ccmp 146 0.70 1.56 -0.14 203 -1.03 1.80 0.38

Weighted average QL2B-125 1.52 0.86 . 1.40 042 - 133 0.04 B 1.97 0.74 -
QL2B-25 146 0.64 1.50 0.44 144 0.16 1.92 0.87
QL3 1.52 0.74 1.50 0.46 142 0.12 1.91 0.79
ccMmP 149 0.68 1.58 0.01 1.62 -0.72 1.99 -0.37
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Table 4
Statistics of the comparison between QuikSCAT and CCMP wind direction error per buoy wind speed bin.
Wind speed bins <4 ms’ 4-8§ ms’ 8-12 ms™’ >12 ms™’
Station Database RMSE Bias N RMSE Bias N RMSE Bias N RMSE Bias N
) () (") (*) () () (*) 53]
Peiias QL2B-12.5 78.75 1.00 53 40.40 0.94 53 21.75 —11.43 28 2227 7.90 10
QL2B-25 83.20 —14.83 4223 —9.85 37.35 —=2.07 27.90 1430
QL3 84.07 —16.55 42,08 —9.94 37.38 —2.29 28,03 14.20
ccmp 71.44 —6:19 40,69 -0.36 16.52 —7.54 3090 16.40
Bares QL2B-12.5 79.04 —3233 39 2098 —491 44 15.50 —6.76 42 1052 —1.85 13
QL2B-25 64.15 —22.05 20.85 —9.68 17.08 —8.79 12.84 —3.08
QL3 63.32 —2028 20.84 —10,00 16.97 —9.17 12.83 —3.15
ccmp 62.44 —15.15 2084 —5.84 13.98 —B6.05 14.03 —3.85
Villano QL2B-12.5 7238 6.53 53 3421 3.80 56 15.46 —1.73 49 13.01 1.10 20
QL2B-25 65.20 —8.17 29.02 1.98 15.53 —1.76 15.60 285
QL3 63.14 —2.83 31.63 1.30 16.94 =271 15.97 350
ccmp 65.76 417 30.78 —1.63 14.93 047 1279 1.65
Silleiro QL2B-12.5 72.84 9.62 63 50.01 0.57 30 16.18 —3.04 23 10.50 5.67 9
QL2B-25 68.58 830 GD.48 1293 16.65 —248 16,83 2.56
QL3 71.07 4.21 59.59 13.03 16.90 —2.87 16.73 244
ccmp 56.55 —4.06 49,12 3.20 1531 —3.00 1112 2.56
Cadiz QL2B-12.5 82.81 —3.04 43 22.86 469 39 13.57 3.59 22 9.56 444 9
QL2B-25 69,72 11.00 35.13 1254 15.91 241 6.11 022
QL3 68.89 1033 36.04 11.95 16.53 2,14 6,20 -133
ccmp 61.48 5.54 26,69 5.36 18.48 323 9.00 —2.56
Weighted average QL2B-12.5 76.78 —1.57 - B2 L1 - 16.39 —4.14 - 1312 275 -
QL2B-25 70.45 —4.02 35.88 0.18 19.86 -3.15 15.81 3.03
QL3 70.53 —4.13 36.54 =017 20.38 —3.66 15.95 297
ccmp 63.36 —2.69 3294 -0.28 1549 —2.68 15.22 241

tendency for the wind speed, but it appears to show a tendency
to overestimate wind speeds below 4 m.s' (positive biases) and to
underestimate wind speeds above 8 m.s™' (negative biases).

Table 4 shows the same comparison as Table 3, but now for the
satellite-derived wind direction error for each measured wind speed bin.

The most striking feature in Table 4 information is that, in terms of
RMSE, wind direction errors are much higher for low wind speeds,
but they significantly decrease with increasing wind speed. This is
also a reported issue of QuikSCAT wind data retrievals (e.g., Chelton
& Freilich, 2005; Hoffman & Leidner, 2005). Low winds have a very

poor directional skill, as a consequence of physical limitations of the
instrument's measurement methodology.

Although the weighted average errors show that CCMP is the da-
tabase with the best scores, it is clear that CCMP also suffers from
this limitation and therefore is not able to overcome this deficiency
in the wind direction retrieval.

Tables 5 and 6 depict the second described comparison. The four
wind direction bins considered were North (angles between 315
and 45°), East (angles between 45 and 135°), South (angles between
135 and 225%) and West (angles between 225 and 315°).

Table 5
Statistics of the comparison between QuikSCAT and CCMP wind direction error per buoy wind direction bin.
Wind direction bins MNorth East South West
Station Database RMSE Bias N RMSE Bias N RMSE Bias N RMSE Bias N
(") ! ") (") ") ) ] ")

Penas QL2B-12.5 4643 —18.28 25 61.29 7.21 53 7438 —=10.79 19 40.02 3.02 47
QL2B-25 49.86 —22.68 65.13 —9,00 79.96 —15.47 46,09 245
QL3 49.88 —22.76 64.96 —9.15 80.06 —16.42 47,89 0.85
ccvp 37.23 —14.40 52.15 —4.26 66.46 11.16 4897 —~0.40

Bares QL2B-12.5 50.07 —~18.35 34 40.65 - 1598 52 40.26 14.92 13 4594 —13.44 39
QL2B-25 37.09 —2294 38.97 —16.08 3424 —1.54 36.88 -1.51
QL3 37.12 —2309 38.99 —16.21 36.86 0.85 3441 —1.03
ccvp 37.80 -16.21 36.50 —18.06 33.19 4.46 35.70 7.18

Villano QL2B-12.5 46.67 —4.74 57 37.93 1.40 35 44.20 10.47 34 47.50 6.94 52
QL2B-25 39.72 —8.86 37.23 —8.00 42.67 9.38 41.32 221
QL3 36.57 —10.42 37.26 -7.3 42,42 9.59 43,96 7.38
ocmp 40.83 —3.26 24,00 2.03 47.96 332 44.52 3.62

Silleiro QL2B-12.5 56.73 233 48 62.42 6,50 20 69.38 16.64 28 41,15 —3.59 29
QL2B-25 60.04 379 50.43 —4.85 75.10 33.71 33.79 —524
QL3 63.32 -1.50 50.04 —5.65 75.01 33.75 34.14 -5.10
ccvp 4399 2,65 58.41 —26.45 62.38 3.64 18.83 3.24

Cadiz QL2B-12.5 49.77 7.68 37 16.01 —3.82 33 92.36 — 12892 13 654,01 4.74 35
QL2B-25 3229 —3.43 32.02 —-291 92.66 15.62 54.34 31.20
QL3 3399 —4.11 35.13 —3.58 90.10 17.54 52.32 29.69
ccmp 30.89 —-297 2449 —6.48 85.40 -1.31 4393 24,69

Weighted average QL2B-12.5 50.19 —4.75 - 43.87 —2.05 - 61.52 6.01 - 4741 0.20 -
QL2B-25 44.02 —-8.94 45.84 -925 62.83 10.77 4275 5.50
QL3 44.23 —10.81 46.29 -9.40 62.75 11.20 43,07 6.31
ccvp 38.79 -537 38.75 -9.52 57.77 4.37 40.06 697
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Table 6
Statistics of the comparison between QuikSCAT and CCMP wind speed error per buoy wind direction bin.
Wind direction bins North East South West
Station Database RMSE Bias N RMSE Bias N RMSE Bias N RMSE Bias N
(ms™") {ms™") (m.s™") (ms!) (ms') (m.s!) (ms™") (ms")

Peias QI2B-12.5 325 1.48 25 205 098 53 225 1.98 19 234 1.01 47
QL2B-25 240 1.10 157 0.49 238 1.66 2.32 0.87
QL3 239 110 1.59 0.49 239 1.68 23 0.87
ccmp 1.74 0.34 1.67 —-0.27 267 1.23 23 —0.26

Bares QL2B-125 1.16 045 34 1.19 020 52 1.1 0.71 13 1.03 —-0.14 39
QIL2B-25 1.67 073 1.08 0.30 1.16 0.43 1.2 0.04
QL3 1.67 0.75 1.08 029 1.15 0.46 1.22 —0.01
comp 1.81 0.43 1.10 —-0.10 1.35 0.82 1.81 —0.37

Villano QL2B-12.5 1.36 0.60 57 127 028 35 137 0.21 34 1.55 0.74 52
QL2B-25 1.27 0.49 1.75 099 1.25 0.29 1.38 0.66
QL3 1.26 0.36 1.89 1.04 147 037 1.38 0.68
ccmp 1.40 0.00 1.35 —0.19 1.46 0.16 1.69 0.49

Silleire QL2B-125 091 0.05 48 1.76 0.75 20 1.36 057 28 1.51 —~0.03 29
QI2B-25 1.55 -0.14 201 0.95 131 0.44 1.22 ~0.18
QL3 1.33 -0.23 205 0.98 131 0.36 1.25 —=0.19
ccmp 1.35 —0.41 2m —0.05 0.98 0.25 1.33 014

Cadiz QL2B-12.5 0.96 0.25 37 1.38 033 33 0.96 055 13 1.1 0.31 35
QL2B-25 0.97 0.29 1.84 047 095 0.21 111 0.34
QL3 1.13 042 1.85 098 095 0.34 1.08 047
ccmp 1.58 —0.14 204 0.01 1.47 0.76 1.29 012

Weighted average QL2B-12.5 1.38 0.49 - 1.53 0.51 - 144 0.72 - 1.55 045 -
QL2B-25 1.49 0.42 1.56 0.57 142 0.58 1.49 0.41
QL3 146 0.39 1.60 0.67 149 0.61 149 043
ccmp 153 —-0.01 1.56 -0.14 1.54 053 1.73 0.04

A particularly visible aspect is that the South sector presents sub-
stantially higher errors than the remaining sectors. In Pefias, Villano
and Bares stations this could be due to the fact that this sector repre-
sents wind coming from land. As stated by Pensieri et al. (2010),
oceanward winds are less accurately detected by satellites. Moreover,
in this area southerly winds are typically associated with weak synop-
tic forcing events under unstable atmospheric conditions, which will
produce very changeable winds. Thus, this kind of weather systems
present usual difficulties in its forecasting. Additionally, if that is the
case, the extrapolation of buoy measurements from 3 m to 10 m
using a neutral wind profile may also contribute to the error.

Table 6 shows the same comparison as Table 5, but now for the
satellite-derived wind speed error for each measured wind direction
bin.

Table 6 shows that, for the wind speed at the buoys of Pefas,
Silleiro and Cadiz, winds coming from land are associated to higher
errors. Considering the information presented in Tables 5 and 6, it
seems to be present a tendency for QuikSCAT and CCMP performance
to be degraded when winds are coming from land.

3.3. Weibull distribution

The previous sections focused on a record-by-record analysis of si-
multaneous data, with particular attention to mean state and temporal
variability accuracy. In this section, the goal is to assess which one of
the databases is able to offer a characterization of the buoys wind re-
gimes closer to reality. For this, Weibull PDF's will be used to evaluate
QuikSCAT and CCMP ability to describe the buoy local wind regimes,
in terms of the wind speed distribution frequency. The Weibull PDF's
of the buoys, QuikSCAT and CCMP databases, are shown in Fig. 2.
Table 7 depicts the Weibull PDF parameters (A and k) and the most
probable wind speed (U} values and respective errors. N represents
the number of valid wind speed records of each one of the four data-
bases and the respective buoy. It is worth to underline that, in this sec-
tion, the temporal consistency of the databases will not be reflected in
the results, since they are presented in terms of a frequency distribution
that does not reflect temporal variability accuracy.

It is possible to see that CCMP Weibull PDF's are, in general, closer
to the buoy ones for all stations when compared to QuikSCAT ones,

revealing a better ability to describe the wind speed frequency spec-
trum for all buoys. All QuikSCAT databases present similar results, ex-
cept for Silleiro and Cadiz buoys. Fig. 2 shows also some interesting
facts.

Firstly, that QuikSCAT databases systematically overestimate the
frequencies of wind speeds above 6-8 m.s'' and underestimate the
frequencies of wind speeds below 5-6 m.s™', making QuikSCAT
Weibull curves clearly shifted to the right side of the wind speed
axis in all stations, relatively to the buoy ones. The exceptions are
for QL2B-12.5 in Silleiro and Cadiz buoys, and QL2B-25 for Cadiz.
This shifting reveals that QuikSCAT data presents higher frequencies
of strong winds and lower frequencies of weak winds than in reality.
The underestimation of low winds and overestimation of strong
winds probably reflects the worst performance of QuikSCAT for low
and strong winds speeds observed in Section 3.2, The conjugation of
the overestimation of strong winds frequencies and the underestima-
tion of low winds frequencies originates the overall wind speed
overestimation tendency detected in all the results presented in this
work.

Secondly, that CCMP tends to introduce a lower variability in the
wind speed distribution. This is visible in its overestimation of the fre-
quency of the observed most frequent wind speeds and consequent un-
derestimation of frequency of the observed wind speeds with lower
frequencies: CCMP PDF's show a slight overestimation tendency of the
frequency of winds between 4 and 8 m.s™! together with a slight under-
estimation of wind frequencies above 10 m.s™'. Nevertheless, CCMP
accurately represents the shape and position of the Weibull PDF curves,
without any clear shifting tendency.

Analysing Table 7, it is clear that CCMP presents the best results,
showing a lower weighted average deviation for all the Weibull param-
eters (including the estimation of the most probable wind speed).
CCMP better performance is particularly visible in the scale parameter
(A) error scores, which is related to (but not equal) to the mean wind
speed. Among QuikSCAT databases, QL2B-25 is the one with the lowest
errors for the scale parameter and most probable wind speed, whilst for
the shape parameter (k) QL3 is the one with the best overall perfor-
mance. It is again clear that QuikSCAT presents worse overall results
in Pefas, due to its location inside the satellite land contamination
area. CCMP seems to be able to attenuate this QuikSCAT limitation.
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Fig. 2. Buoy, QuikSCAT and CCMP Weibull PDF's for all buoys.

These results were expected, since this analysis based on a fre-
quency distribution does not reflect errors due to inaccuracies in the
temporal variability representation. Although QuikSCAT databases
showed better performance for the wind speed temporal variability
(RMSE, STDE and R?), CCMP lower errors in the estimation of the
wind speed frequency distribution are related to its lower biases for
the wind speed. Moreover, the fact that CCMP includes four records
per day and all of these records are valid, also improves its ability to
accurately describe the local wind regimes. Taking into account the
full available valid records for each database, and not only the simul-
taneous, it is possible to see that QL2B-12.5 km is able to provide
higher number of records for locations inside QuikSCAT's land
masking area. For Pefias, the buoy closest to shore, QL2B-12.5 km ac-
counts for almost more 40% of valid data records when compared to
QL2B-25 km, due to its increased resolution. Obviously, due to the
fact that CCMP includes four valid records per day. this database is
able to offer much more data than QuikSCAT.
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Besides the results presented and analyzed in this study, it should
to be borne in mind that, as stated by Sinchez et al. (2007), winds
measured by anemometers (like the ones considered here) and
satellite-derived wind data can be very different due to the fact that
scatterometer winds tend to represent synoptic winds (Austin &
Pierson, 1999). Although QuikSCAT is able to detect mesoscale features
(e.g.: Atlas et al., 1999, 2001), this detection is somewhat limited and
distorted due to its low spatial resolution and temporal sampling.
These mesoscale features include land-sea breezes, orography and
tidal effects that if not present in the satellite-derived winds, can lead
to large differences between this type of wind data and the ones mea-
sured in situ, which take into account these mesoscale effects. Further-
more, and as stated by Pensieri et al. (2010), satellite winds represent a
spatial average of instantaneous moments, while anemometer wind
data is closer to a temporal average of instantaneous measurements
taken at a specific and fixed location. Moreover, Carvalho et al. (2012)
proved that these buoy winds are very correlated with the surrounding
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Table 7
Deviations of the Weibull PDF parameters (A and k) and most probable wind speed (Ujqqs) for all databases. Note that the weighted mean errors are calculated using absolute
values.
Station Database A Error K Error Ugiron Error N
(ms) (-) (ms)
Pefias Buoy 6.76 - 1.74 - 3.65 - 7 048
QL2B-12.5 8.46 25.1% 1.98 13.7% 5.88 61.1% 587
QL2B-25 7.97 17.8% 1.80 3.6% 4.62 26.7% 424
QL3 8.11 20.0% 1.84 5.6% 4.89 34.0% 321
ccvP 5.80 0.5% 1.91 9.7% 442 21.0% 1464
Bares Buoy 8,70 - 222 - 741 - 7470
QL2B-12.5 8.77 0.7% 207 —6.6% 6.62 —-10.7% 425
QL2B-25 8.89 21% 203 —87% 6.43 —=132% 448
QL3 9.14 5.0% 220 —1.0% 765 3.1% 506
ccMP 8.46 -29% 2,18 —-1.8% 6.98 —5.9% 1 464
Villano Buoy 8.43 - 2,05 - 622 - 8745
QL2B-12.5 8.73 3.5% 2,10 27% 6.76 8.6% 435
QL2B-25 8.95 6.2% 209 20% 6.85 10.0% 484
QL3 917 8.8% 218 6.5% 7.58 21.8% 496
ccmp 8.39 —0.5% 2.26 10.3% 7.36 18.3% 1 464
Silleiro Buoy 7.16 - 1.88 - 448 - 7754
QL2B-125 6.84 —~4,5% 1.66 —=11.3% 334 —254% 255
QL2B-25 7.40 3.4% 1,89 0.5% 4.68 4.4% 408
QL3 792 10.7% 203 8.4% 577 28.8% 575
ccmp 7.22 0.8% 1.97 4.8% 4.94 10.2% 1 464
Cadiz Buoy 7.21 - 2.00 - 5.10 - 8770
QL2B-125 722 0.2% 1.69 —15.5% 365 —2B3% 237
QL2B-25 7.20 -0.1% 1.60 —-20.1% 321 —-37.0% 202
QL3 7.88 9.4% 224 12.0% 6.82 33.7% 534
ccmP 693 —3.8% 21 5.6% 541 6.1% 1 464
Weighted average QL2B-12.5 =~ 6.8% =~ 9.8% = 26.4%
QL2B-25 - 5.9% - 6.8% 17.8%
QL3 - 10.7% - 6.6% - 23.9%
ccmP - 1.7% - 6.4% - 12.3%

orography and, according to Sanchez et al. (2007), the comparison
between these types of winds with satellite-derived wind data can pro-
duce large errors associated to spatial heterogeneities of the wind field
and small-scale wind variability. Despite these limitations, together
with the ones shown in this study, satellite-derived data have their
strength in their high spatial frequency over the ocean where it could
make up for the usual lack of observations, contributing then to a
better description of the surface wind field within the data assimilation
process.

4. Conclusions

The present work analyses and compares the performance of
three QuikSCAT and the recently released CCMP ocean surface wind
databases, with the objective of determining which database offers
the best representation of the surface ocean wind when compared
to measured wind. One year of wind data from CCMP, QuikSCAT L2B
(12.5 and 25 km resolution), QuikSCAT L3 and measurements from
five buoys located along the Iberian Peninsula shore (Galician coast
and Gulf of Cadiz) were selected for this comparison.

Different types of comparison were performed. First, a thorough
statistical analysis was conducted focusing on the record-per-record
accuracy of the several databases. For this comparison, the main con-
clusions can be summarised as follows:

- For the wind speed, QuikSCAT databases showed the best results in
terms of accuracy in representing the wind magnitude temporal
variability, with the high-resolution QuikSCAT product showing
the highest R? and lowest RMSE and STDE. Oppositely, CCMP clearly
showed the best performance in depicting the mean wind state due
to the lowest biases. QuikSCAT databases showed clearly higher er-
rors for low and strong wind speeds and significant better perfor-
mances for intermediate wind speeds (between 4 and 12 ms™),
while CCMP performance is better for low and intermediate wind
speeds. All QuikSCAT databases showed a systematic tendency to

overestimate the wind speed, with this overestimation being higher
in the presence of low (below 4 ms™') and strong winds (above
12 ms™'). CCMP also shows a tendency to overestimate the wind
speed in the presence of low winds, but oppositely has a tendency
to underestimate wind speeds above 8 m.s™'.

For the wind direction, CCMP showed the best results in representing
the temporal variability (in average, highest R?, lowest RMSE and
STDE) and the high-resolution QuikSCAT product presented the
lowest average bias. All databases presented a slight anti-clockwise
rotation for the Northern Galician coast and a clockwise rotation
for the Western Galician coast and Gulf of Cadiz. All products
showed the highest wind direction errors in the presence of low
wind speeds and a clear improvement when the wind speed in-
creases. Moreover, the wind direction errors are significantly higher
than the wind speed ones.

All QuikSCAT products presented worse results for Pefias buoy. This
is related to the fact that this buoy is the only one positioned inside
the satellite land contaminated area, indicating that satellite-derived
data shows limitations in representing coastal winds. CCMP showed
ability to improve these results, but not to mitigate this issue
completely. Although the high-resolution QuikSCAT L2B product is
the one with the best overall results for all the near-shore buoys con-
sidered in this work, it was not able to show any significant im-
provement for the one closest to shore (Pefias).

For the second comparison, which aims to assess which database
is able to offer the wind regime characterization closest to reality, the
main conclusion is that CCMP is clearly the database with the best abil-
ity to characterize the local wind regimes. The fact that CCMP has higher
temporal sampling (four records per day), complete data availability
(it does not contain invalid records) and the lowest wind speed biases
can explain this performance.

The results presented in this work show that QuikSCAT products have
their strength in representing the temporal variability of the wind speed
and the mean state of the wind direction. Although no major differences
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were detected among QuikSCAT products, the high-resolution product
was the one with the best overall scores. However, CCMP is able to
bring significant improvements in terms of wind direction temporal var-
iability and wind speed mean state. Moreover, CCMP is able to partially
overcome some of QuikSCAT's known problems, mainly those related
to QuikSCAT systematic tendency to overestimate the wind speed and
land masking effects. Furthermore, is a gridded dataset with a higher
temporal sampling and complete data availability when compared to
QuikSCAT. These features, all together, can make of CCMP an interesting
and valuable database for offshore wind energy assessment studies,
where the accuracy in representing the wind speed mean state plays a
key role, and also for meteorological, oceanic and climate modelling ap-
plications where gridded wind data with good temporal sampling and
data availability is vital to force numerical simulation models.
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5.2 — Is the optimised WRF offshore wind simulation able to surpass

satellite-derived and other alternative sources of offshore wind data?

After the selection of the best official QuikSCAT product, this database and other
alternative sources of offshore wind data are compared to in situ measured offshore winds
and with offshore winds simulated by WRF using its optimised configuration, aiming to
assess if WRF is able to surpass satellite (QuikSCAT) derived and also other alternative
sources of offshore wind data. These other alternative sources of offshore wind data
include unofficial QuikSCAT data processed by other agencies besides NASA (blended
QuikSCAT products that may or not use other data sources in its processing), CCMP

Ocean Surface Wind Vectors, reanalyses and analyses datasets.

This research is presented in the following paper, in which is included the methodology
followed, area under study, offshore wind data sources tested, observed data used to
compare the simulations, introductory notes and state of the art. This article can be found

on the link: http://www.sciencedirect.com/science/article/pii/S003442571400265X
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1. Introduction

ABSTRACT

Offshore wind data derived from satellite measurements (CCMP, QuikSCAT, NCDC Blended Sea Winds and
IFREMER Blended Wind Fields), reanalyses (NCEP-CFSR, ERA-Interim, NASA-MERRA and NCEP-RII), analyses
(NCEP-FNL and NCEP-GFS) and WRF modelled offshore winds were compared to in situ measurements, in
order to assess which one of these products is the best alternative to in situ offshore measured wind data.
Wind speed and direction from these products were compared to measurements collected at five buoys moored
along the lberian Peninsula Atlantic coast.
Results show that WRF modelled offshore winds are the best alternative to in situ measured offshore wind data,
showing the highest temporal accuracy (the ability in representing the wind speed and direction at a given time
instant) and lowest errors in terms of offshore wind power flux estimations. However, offshore wind data taken
from CCMP shows the lowest errors in terms of the mean wind speeds and, together with IFREMER-BWEF, the best
wind temporal accuracy after WRF simulation. Therefore, in general CCMP and IFREMER-BWF can be considered
as the best alternatives to WRF high resolution modelled offshore winds, if the latter is not available. Specifically
for offshore wind energy resource assessment, NCEP-CFSR reanalysis or NCEP-GFS analysis data can also be used
with confidence as an alternative to WRF modelled data, showing better wind power flux estimates than CCMP
and IFREMER-BWF.
Despite the best performances of WRF high resolution offshore winds, such modelling tasks require considerable
computational resources and time to obtain quality results. Therefore, the value of satellite-derived wind data
should not be disregarded. These remotely sensed offshore wind measurements should be seriously considered
when searching for alternative sources of wind information for ocean areas, in particular for open ocean areas
where they have their strength.

© 2014 Elsevier Inc. All rights reserved.

their availability is highly variable both in space and time and cannot
be considered as representative of local wind regimes (Risien &

Climatic, atmospheric and oceanic modelling applications require
accurate oceanic surface wind data to, realistically, represent the
oceanic forcing fields and interactions between air and sea. Moreover,
data regarding ocean winds is very valuable in the context of offshore
wind energy, which is expected to constitute a significant part of the fu-
ture wind-derived energy as a whole (Carvalho, Rocha, Gomez-Gesteira,
& Santos, 2012; Carvalho, Rocha, Santos, & Pereira, 2013). However, it is
known that ocean areas suffer form a strong lack of measured wind
data, mainly due to the high costs and technological challenges involved
in the installation of wind measuring masts at such sites. Even when in
situ data exists (collected on board ships, vessels, moored buoys, etc.)

* Corresponding author. Tel.: +351 234 370 356; fax: +351 234 378197,
E-mail addresses: david.carvalho@ua.pt {D. Carvalho), alfredo.rocha@ua.pt (A. Rocha),
mggesteira@uvigo.es (M. Gomez-Gesteira), cmi@sep.ipp.pt (C. Silva Santos).

http:/fdxdoiorg/10.1016/j.rse 2014.07.017
0034-4257/© 2014 Elsevier Inc. All rights reserved.

Chelton, 2006). Especially for offshore wind resource assessment appli-
cations, accurate wind data is a key factor because energetic production
is proportional to the wind speed cubed (Bruun, Koch, Horstmann,
Hasager, & Nielsen, 2006), making that apparent small inaccuracies in
the wind velocity can originate large discrepancies in the expected
wind-derived energy production.

Thus, it becomes paramount to search and validate alternative data
sources to in situ measured wind data over ocean areas. These alternative
sources of offshore wind data consist, basically, in satellite-derived mea-
surements, data simulated by numerical weather prediction (NWP)
models and products that combine observed and NWP simulated data
(mainly reanalysis and analysis datasets). While satellite-derived wind
data is available at a near-global scale and in a time-continuous way,
they are indirect measurements (that is, they are derived from other
measurements and processed using complex geophysical models) and
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often suffer from low spatial and/or temporal resolutions, together with
large missing/erroneous data gaps (data records affected by rain,
malfunction of instruments, etc.). NWP models, in particular regional
circulation models (RCMs, also known as mesoscale models), are able
to produce meteorological data at high spatial and temporal resolutions
for any area of the globe, and in a relatively fast way (depending on the
available computational resources, NWP model configuration, desired
resolutions and spatial/time coverage). In the recent past, NWP
modelling has found a number of applications focused on deriving wind
information to study meteorological and climatic events, drive oceanic
models and in the preliminary search and identification of potential
sites for wind energy exploitation. However, NWP modelled wind data
usually shows non-negligible deviations when compared to observed
data, mainly due to their inability in accurately resolving medium- to
small scale meteorological processes (Carvalho, Rocha, Gomez-Gesteira,
& Silva Santos, 2014). Reanalysis and analysis products combine data
simulated by global circulation models (GCMs) with large amounts of
meteorological measurements, providing a complete and homogeneous
synthesis of the available global observations assimilated into a continu-
ous and coherent physical structure (Trenberth et al., 2010). However,
these kinds of products are usually available at low spatial resolutions
(250 to 50 km), insufficient to accurately characterize local wind regimes
and adequately represent medium and small scale meteorological
features.

The aim of this study is to evaluate and compare several alternative
sources of offshore wind data with in situ ocean surface wind measure-
ments, with the main objective of determining which of these
alternative offshore wind sources best describe the local wind regimes
at the selected buoy locations and, thus, can be considered as the best
alternative to in situ measured offshore wind data. For this, one
complete year of satellite-derived wind data, NWP modeled and
reanalysis/analysis products are compared with in situ offshore wind
measurements collected by five buoys moored offshore the Iberian
Peninsula Atlantic coast (Gulf of Cadiz, West and North Galician
coast). The NWP chosen to run the offshore wind simulation for the
area under study is the Weather Research and Forecasting {WRF)
mesoscale model. The sources of satellite-derived offshore wind data
used in this study are: NASA's SeaWinds scatterometer installed
onboard the QuikSCAT satellite platform (henceforth referred to as
QuikSCAT); the National Climatic Data Center Blended Sea Winds
(NCDC-BSW); the French Research Institute for Exploitation of the Sea
Blended Wind Fields (IFREMER-BWF); and the Cross-Calibrated
Multi-Platform Ocean Surface Wind Vectors (CCMP). The reanalyses
and analyses considered in this study are: the National Centres for
Environmental Prediction Reanalysis 2 (NCEP-R2); the European Centre
for Medium-Range Weather Forecasts (ECMWF) Interim reanalysis
(ERA-Interim); the National Centre for Environmental Prediction
Climate Forecast System Reanalysis (NCEP-CFSR); NASA's Modern Era
Retrospective Analysis for Research and Applications (NASA-MERRA);

Table 1
Main characteristics of the considered offshore wind datasets,
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the National Centre for Environmental Prediction Global Forecast
System (NCEP-GFS) and the National Centre for Environmental
Prediction Final Analysis (NCEP-FNL). The main characteristics of all
these sources of offshore wind data are presented in Table 1, and in
Sections 2.1, 2.2 and 2.3 additional information about these datasets
are presented.

The published literature includes several studies that compare NWP
offshore wind simulations with observations (eg.: Berge, Byrkjedal,
Ydersbond, & Kindler, 2009; Carvalho, Rocha, & Gomez-Gesteira,
2012; Carvalho, Rocha, Gomez-Gesteira, & Silva Santos, in press-a,b;
Jiménez, Durante, Lange, Kreutzer, & Tambke, 2007; Ohsawa et al.,
2007; Shimada & Ohsawa, 2011; Shimada, Ohsawa, & Yatsu, 2009), or
that compare satellite-derived offshore winds with buoy measurements
(eg.: Ebuchi, Graber, & Caruso, 2002; Moore, Pickart, & Renfrew, 2008;
Pensieri, Bozzano, & Schiano, 2010; Pickett, Tang, Rosenfeld, & Wash,
2003; Sinchez et al., 2007; Satheesan, Sarkar, Parekh, Ramesh Kumar,
& Kuroda, 2007; Tang, Liu, & Stiles, 2004). Also studies that compare
satellite-derived, reanalyses, and/or blended satellite-derived offshore
winds with measurements are available (eg.: Kent, Fangohr, & Berry,
2013; Li et al., 2013; Ruti, Marullo, D'Ortenzio, & Tremant, 2008), as
well as studies that focus on the comparison of NWP and satellite-
derived offshore winds with observations (eg.: Accadia, Zecchetto,
Lavagnini, & Speranza, 2007; Karagali et al., 2013; Wallcraft et al.,
2009). From these studies there are evidences that products that com-
bine satellite and NWP data, and in particular CCMP, can offer improve-
ments when compared to individual satellite records. However,
satellite-cerived records are usually more accurate than reanalyses/anal-
yses. Furthermore, NWP-derived data, in particular the ones obtained
with mesoscale NWP models, seems to show better performance in
terms of wind variability but higher biases when compared to satellite-
derived winds. In particular for the area here under study, the following
studies should be highlighted: Penabad et al. (2008) compared 4 years
(2002-2005) of QuikSCAT and two NWP (MM5 and ARPS) modelled
winds with measured wind data collected effshore the Galician Coast,
concluding that no significant differences between models and satellite
data were found. Otero and Ruiz-Vilarreal (2008) evaluated the reliability
of different meteorological models through the comparison with ob-
served winds around the north-west and north Iberia during autumn
2002 showing significant differences among modeled wind data prod-
ucts. Carvalho, Rocha, Gomez-Gesteira, Alvarez, and Silva Santos (2013)
compared 3 different QuikSCAT products (gridded L3 and swath L2B
with 25 and 12,5 km) and CCMP with measured winds collected in the
same buoys considered in this study, for the same time period (2008),
concluding that the high resolution QuikSCAT L2B product showed the
best results for the wind speed variability and wind direction means,
while CCMP showed the best results for wind speed means and wind di-
rection variability. Alvarez, Gomez-Gesteira, deCastro, and Carvalho
(2013) compared 10 years (2000-2009) of wind data from six databases
(NCEP-R2, ERA-Interim, NASA-MERRA, NCEP-CFSR, QuikSCAT and

Dataset Type of dataset Spatial resolution Temporal resolution Processing level Included dara sources Time coverage

WRF NWP 5 km Hourly = Forcing data from reanalyses -

QuikSCAT Satellite (Swath) 12,5 km 2 times/day L2B QuikSCAT 1999-2009

NCDC-BSW Satellites (Gridded)” 0.257 lat/lon 4 tmes/day L3 QuikSCAT, SSM/1, 1987 -Present
TMI, AMSR-E

IFREMER-BWF Satellites + analysis 0.25 lat/lon 4 times/day L4 QuikSCAT, SSM/1, ECMWF Analyses 1999-2009

ccmpe Satellites + analysis 0.25° lat/lon 4 times/day L4 QuikSCAT, SSM/1, SSMIS, AMSR-E, WindSat, 1987-2011
ECMWF Analyses

NCEP-R2 Reanalysis 2.5" lat/lon 4 times/day - NWP and observations 1979-Present

ERA-Interim Reanalysis 0.75" lat/lon 4 times/day - NWP and abservations 1979-Fresent

NCEP-CFSR Reanalysis 0.5" lat/lon Hourly - NWP and observations 1979-Present

NASA-MERRA Reanalysis 057 lat-2/3 lon Hourly - NWP and observations 1979-Present

MNCEPR-FNL Analysis 1" lat/lon 4 times/day - NWEP and observations 1999-Present

NCEP-GFS Analysis 0.5° lat/lon 4 times/day - NWP and observations 2004-Present

4 The NCDC-BSW uses NCEP-R2 wind direction data, but does not blend reanalysis or analysis wind fields with remotely sensed data;
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CCMP) with wind measurements collected by four buoys moored in the
southern limit of the Bay of Biscay, concluding that the wind products
with finer spatial resolution provide the best results, especially in near-
shore areas. Sousa, Alvarez, Vaz, Gomez-Gesteira, and Dias (2013) evalu-
ated 1 year of QuikSCAT and WRF modelled winds with in situ measure-
ments collected by three buoys moored offshore the Galician coast,
reporting that the wind speeds derived from QuikSCAT and WRF do not
show significant differences along the coast. Despite all of this research,
no study was found that makes a joint comparison of all these sources
of offshore wind data, objectively assessing through an integrated com-
parison which one of these products is the best alternative to in situ off-
shore wind measurements, nor for the area here under study nor for
any other areas of the globe. Such findings can be of great value for
areas where no in situ offshore measured data are available (or the avail-
able data is insufficient and/or inadequate for the desired purposes) and,
therefore, valid alternatives have to be found. This is the case for the area
under study, since the Iberian Peninsula is presently one of the areas with
the highest percentage of installed onshore wind power per capita world-
wide due to its attractive wind conditions. This asset, combined with its
large coastal line, makes this area a promising one for future installation
of offshore wind farms.

2. Data and methodology
2.1. Satellite wind data

NASA's SeaWinds instrument, onboard the QuikSCAT satellite
launched in 1999, consists of a microwave scatterometer that retrieves
wind fields by measuring the ocean surface backscatter, with a spatial
resolution of 0.25° in latitude and longitude and collecting two
measurements per day (corresponding approximately to 6 A.M. for
the ascending pass and 6 P.M. for the descending pass). More details
are available in Hoffman and Leidner (2005) and in NASA's Jet
Propulsion Laboratory Physical Oceanography Distributed Active
Archive Centre (JPL-PO.DAAC) website (http://podaac.jpl.nasa.gov/
OceanWind/QuikSCAT). QuikSCAT wind data is available in three differ-
ent products, according to their processing level (Dunbar et al., 2006).
Carvalho, Rocha, Gomez-Gesteira, et al. (2013) compared all QuikSCAT
different products (the official and original QuikSCAT data provided by
JPL-PO.DACC only) for the area here under study and concluded that
the L2B processing-level high resolution (12.5 km) QuikSCAT product
showed higher accuracy when compared to measured data. Therefore,
this L2B high resolution QuikSCAT database was selected to use in the
present work. Despite the good results obtained with QuikSCAT, making
it one of the most famous and used sources of satellite-retrieved
offshore wind data, it shows strong limitations in retrieving quality
wind records in the presence of rain (that artificially increases the
ocean surface roughness and, consequently, the measured backscatter),
originating an overestimation of the ocean surface wind speed and
misalignments of the wind direction. Additionally, in the presence of
either low (below 5 m-s~') or strong winds (above 15 m:s~ '),
QuikSCAT data is known to be affected. Moreover, for coastal areas
located less than 25-30 km from the coast QuikSCAT is not able to
accurately represent the spatial and temporal variability of the wind
fields due to land masking effects. Finally, QuikSCAT instruments
permanently failed in November 2009 ending its 10-year mission.

The NCDC Blended Sea Winds database consists of a 6-hourly (0, 6,
12 and 18 h) gridded global dataset of ocean surface wind vectors,
with a spatial resolution of 0.25" in latitude and longitude. Wind speeds
are produced by blending observations from multiple satellites: the
several SSM/I missions (SSM/I FO8, F10, F11, F13, F14, F15 and F17),
QuikSCAT, the Tropical Rainfall Measuring Mission Microwave Imager
(TRMM-TMI), and the Advanced Microwave Scanning Radiometer
Earth Observing System (AMSR-E). Wind direction data is extracted
from NCEP-R2 and ECMWF operational analysis, being interpolated
to the blended wind speed grid. By blending multiple satellite

observations, it is possible to fill in the data gaps of each satellite individ-
ual measuring missions, both in time and space, allowing the construc-
tion of an ocean surface wind database that spans from 1987 to the
present time in near real-time. Detailed description about this dataset
can be found in Zhang, Reynolds, and Bates (2006).

The IFREMER Blended Wind Fields gridded product blends wind
data from the same satellites as NCDC-BSW (QuikSCAT and SSM/I
radiometers available at Météo France at near real-time), with the same
spatial and temporal resolution (6-hourly for a 0.25° latitude/longitude
grid). The main difference between this product and NCDC-BSW is that
IFREMER-BWF also blends the ECMWEF analysis wind speed and direction
data onto its grid, instead of simply adding wind direction records to its
grid as NCDC-BSW does. Furthermore, this product spans from 1999 to
2009, not being available after this date. This dataset was obtained from
the Centre de Recherche et d'Exploitation Satellitaire (CERSAT), at
IFREMER, Plouzané (France), and more details can be found at the
CERSAT-IFREMER website (http://cersat.ifremer.fr/).

The CCMP is a long-term (presently from 1987 to 2011), gap-free
6-hourly gridded database of global ocean surface wind vectors, with
a spatial resolution of 0.25° both in latitude and longitude. CCMP also
uses, as first-guess background fields, NWP reanalysis/analysis: the
ECMWEF ERA-40 reanalysis from mid-1987 to the end of 1998, and the
ECMWF operational analysis from 1999 onward, CCMP assimilates
into these background field satellite wind measurements from the
TRMM-TMI, QuikSCAT, WindSat, SSM/I, SSMIS, AMSR-E and other
satellites, and also data from in situ measurements (ships, buoys, etc.).
More details about this product can be found in Atlas, Hoffman,
Ardizzone, Leidner, and Jusem (2009).

All these satellite-derived wind data are retrieved mainly by micro-
wave sensors (radiometer, altimeter and/or scatterometer), which are
more sensitive to the ocean surface roughness (from which the wind
fields are derived through geophysical models) rather than the wind
speed due to atmospheric stratification. Thus, this kind of sensors is
calibrated to an equivalent neutrally stable wind at a reference height
of 10 m above sea level (a.s.l.) (Chelton, Schiax, Freilich, & Milliff, 2004;
Liu & Tang, 1996; Singh, Parekh, & Attada, 2013; Verschell, Bourassa,
Weissman, & O'Brien, 1999). Furthermore, for all satellite-derived data,
a thorough quality control was performed and all records flagged with
poor quality were disregarded.

2.2. Reanalysis and analysis datasets

The NCEP-R2 (Kanamitsu et al., 2002) reanalysis belongs to the first
generation of reanalysis produced and publicly released. It is still
operational and updated in near real-time, a unique feature among
the first generation reanalyses, and still widely used. However, this
product has a very coarse spatial resolution (approximately 2.5° in
latitude and longitude) and the amount of satellite-derived meteorological
data assimilated is very limited.

In recent years, a newer generation of reanalysis datasets has been
produced: the ERA-Interim (Simmons et al., 2007) represents the
state-of-the-art reanalysis produced in Europe, with unique assets
such as the four dimensional variational analysis assimilation methods
for observed data (4D-var). The NCEP-CFSR (Saha et al,, 2010) also
offers exclusive features, such as the highest spatial resolution of all
reanalyses and the use of a coupled atmosphere-land-ocean-sea ice
model. Both ERA-Interim and NCEP-CFSR employ a variational bias
correction that offers clear improvement in satellite radiance biases.
The reanalysis produced by NASA, NASA-MERRA (Rienecker et al.,
2011) introduced an innovation by implementing an incremental
analysis update, a nudging technique that offers smoother transitions
from the model towards the observations.

The NCEP-FNL and NCEP-CFS analysis, although not reanalysis
products, have a substantial record in wind energy applications, mainly
due to the advantage of being available and released in real-time (with-
in a day or less). This fast availability is related to the fact that these
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analyzed datasets only assimilate operational observations (i.e., that are
part of the global operational measurements network and are quickly
available for model assimilation). However, and as consequence of this
fast availability, these analyzed products do not assimilate as much ob-
served data as reanalysis products do. Although these two NCEP analy-
ses share the same GCM model, characteristics and configuration
details, NCEP-FNL assimilates a higher amount of measurements but
NCEP-GFS has a much finer spatial resolution.

2.3. WRF mesoscale model simulation

The NWP simulation of the near surface ocean winds was performed
with the WRF mesoscale model, version 3.4.1, a widely used state-of-the-
art NWP modelling code developed by NCEP and the National Center for
Atmospheric Research (NCAR), among other institutions that collaborat-
ed in the developing, testing and validation of this model. Details regard-
ing this code are available in Skamarock et al. (2008). The configuration
and design of the ocean surface wind fields simulation are based on the
findings of Carvalho, Rocha, and Gomez-Gesteira (2012), Carvalho et al.
(in press-a,b) which evaluated and optimized this mesoscale model for
the area under study. The simulation domains followed a two-way
nesting strategy, with the innermost domain (with 5 km horizontal reso-
lution) nested on a parent domain with 25 km horizontal resolution.
Fig. 1 depicts the simulation domains.

2.4. Offshore measured wind data

The observed offshore wind data used in this study was collected by
five buoys moored off the Galician northern and western coasts and the
Gulf of Cadiz, which are operated and maintained by the Puertos del
Estado Spanish Agency. Summarized information regarding these
buoys is presented in Table 2, and Fig. 1 depicts their locations.

50"

The buoys collect their wind measurements at 3 m a.s.l., while all the
alternative offshore wind data sources under study refer their wind data
to 10 m a.s.l. (including the WRF simulation, to match the other
databases). Moreover, winds measured by buoys and simulated by
NWP models (reanalyses, analyses and WRF simulation for the present
case) are dependent on the surrounding atmospheric stability while, as
aforementioned, all satellite-retrieved data considers equivalent
neutrally stable winds. Since the aim of this study is to assess which of
the alternative sources of offshore wind data is closer to “real” winds
(stability-dependent), data from buoys and NWP models were not
converted to equivalent neutrally stable winds. However, it is necessary
to extrapolate the buoy data to 10 m a.s.l. Ideally, this extrapolation
should be done with methods that account for the atmospheric stability,
such as the Monin-Obukhov theory (Monin & Obukhov, 1954). Howev-
er, to apply this method measurements of temperature, heat fluxes and
friction velocity are necessary, and the buoys considered here do not
collect such data. Thus, methods to extrapolate the wind that assume
a neutral atmosphere, and that can be employed with the available
buoy measurements (wind speed and direction only), were chosen.
The logarithmic wind profile was used to extrapolate the measured
winds:

Uy = (Uzm) . [n(z%)(ln @—:) (1)

In this expression, Uz is the wind speed at the desired measurement
height z, z,,, is the reference measurement height, U, is the wind speed
at the reference measurement height and z, is the site roughness length.
Peixoto and Oort (1992) suggested a value of 1.52 x 10~ m for the
global ocean roughness length. There is evidence that differences be-
tween real winds and neutrally stable winds are low over the global
ocean, rarely exceeding 0.5 m-s~' in the wind speed (Bourassa,

10w

W

Fig. 1. Buoy locations and simulation domains.
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Table 2
Main characteristics of the considered buoys.

Buoy Latitude Longitude Distance to the coast
Pefias 43" 45'N 6°9' 36"W =20 km
Bares 44" 3' 54" N 73T 5TW =32 km
Villano 437 30" 'N 9°12'36" W -30 km
Silleiro 42° 7T 48" N 9" 23" 24" W ~40 km
Cadiz 36" 28'37"N G"57 47" W -55 km

Legler, O'Brian, & Smith, 2003; Chelton & Freilich, 2005; Kara, Wallcraft,
& Bourassa, 2008; Mears, Smith, & Wentz, 2001). Moreover, this extrap-
olation is done for a small height difference (from 3 to 10 m as.l.) overa
surface with low roughness lengths, suggesting that eventual differ-
ences between measured and extrapolated winds will be small. Further-
more, this analysis spans through a complete year of wind data,
whereby it is reasonable to suppose that the average atmospheric strat-
ification is close to neutral.

Considering the 10 m ass.l. winds obtained with the abovementioned
methodology, the local wind regimes of each buoy in 2008 are depicted in
Fig. 2. The wind roses show the sector-wise percentage of wind direction
occurrence and, for each sector, the relative frequency of wind speed bins,
at3 m-s~ ' intervals.

It is visible that these coastal winds tend to follow the local topogra-
phy. These tendencies were previously reported for the Galician coast
by Alvarez, Gomez-Gesteira, deCastro, and Dias (2008), Alvarez, Gomez-
Gesteira, deCastro, Gomez-Gesteira, and Dias (2010), Gomez-Gesteira,
Moreira, Alvarez, and deCastro (2006), and for the Gulf of Cadiz by
Jungclaus and Mellor (2008) and Peliz, Dubert, Marchesielo, and Teles-
Machado (2007). At Pefias buoy, the wind regime is dominated by the
West-east axis with a higher percentage of occurrences for the West
and adjacent sectors, and speeds reach 15 m-s~" in these prevailing
sectors. At Bares the wind regime is similar to the one observed in
Peiias, but here the West-Southwest sector is the dominant one with a
high frequency of strong winds (above 9 m-s~'). In Villano, the wind
regime is characterized by strong (above 9 m-s~ ') Northeast winds. At
Silleiro buoy, it is possible to see a clear prevalence of intense (above
9 m-s"') northerly winds, while in Cadiz the North-Northwest sector is
the dominant one with moderate winds (ranging from 6 to 9 m-s~ '),
while the strongest winds arise from the East-Southeast sector.

It is important to mention that these measured winds were not
assimilated into any of the reanalysis and analysis datasets here consid-
ered (at least in an operational and constant way, in what is related to
the reanalysis and analysis datasets), nor in the WRF modelled winds,
making this measured winds an independent database for validation
of all these tested wind products.

2.5. Statistical evaluation of the wind data

To compare the alternative sources of offshore wind data with the
measurements, the following statistical error metrics were used: the
Root Mean Squared Error (RMSE), the bias, Standard Deviation of the
Error (STDE) and the correlation coefficients (R?) for the wind speed
and direction, The buoys, WRF simulation, NASA-MERRA and NCEP-
CFSR have hourly records, while CCMP, NCDC-BSW, IFREMER-BWF,
ERA-Interim, NCEP-FNL and NCEP-GFS offer four records per day (00,
06, 12 and 18 h) and QuikSCAT only has two records per day (06 and
18 h for the ascending and descending passes, respectively). For these
error metrics, only the simultaneous and valid wind speed and direction
data records among all databases were considered, in order to analyze
the record-by-record accuracy of the several databases and thus assess
the performance of each wind product to represent the measured
wind speed and direction at a given time instant. In addition, the
Weibull probability density functions (PDFs) were used to characterize
the local wind regimes in terms of wind speed distribution frequency

and to compare which database offers the Weibull PDF closer to the
one derived from measured data. The Weibull distribution has been
widely used to describe wind speed distributions, in particular for
wind energy applications, due to its accurate fit to wind speed data.
The most probable and mean wind speed, derived from the Weibull
wind speed distribution, were also used as comparative metrics. To
compute the Weibull PDFs, all the valid data records of each database
were considered, instead of just the simultaneous records. In this way,
the hypothetical advantage of a given wind data source having higher
temporal sampling is preserved in the analysis. Also, the available
wind power flux at each site, derived from measurements and from
alternative data sources, was computed and used as a comparative
metric, considering only wind speed data between 3.5 and 25 m-s ™"
(to comply with typical wind turbine cut-in and cut-off speeds).

For all the gridded offshore wind databases, the closest grid points to
the buoy locations were selected for comparison. As for QuikSCAT data,
the closest swath point to the buoy locations (at a maximum distance of
12.5 km to the buoy) was selected.

3. Results and discussion
3.1. Statistical analysis

Table 3 shows the RMSE, bias, STDE and R? computed between the
buoys and the alternative offshore wind data sources. The last section
of Table 3 correspond to the mean values of each error metric for all
buoys, weighted by the number of valid and simultaneous records
shared by all databases (N). The bias weighted means were computed
using the absolute values of the individual bias values, in order to assess
the magnitude of the biases avoiding mutual cancellations effects, due
to the positive and negative values that this error metric can assume.
For guidance, for each error metric weighted mean the best value is in
bold and underlined.

Considering the overall {weighted mean) errors, Table 3 shows that
WRF modelled winds present the lowest errors in terms of RMSE and
STDE and the highest correlations, both for the wind speed and direc-
tion (for the wind direction, although it does not show the best score
its R? is very close to the highest one). Still for these error metrics,
CCMP-derived wind data showed the best results after WRF (showing
even the highest R? for the wind direction, together with NCEP-CFSR
and NCEP-GFS), with the exception of the wind speed STDE, where
IFREMER-BWF has the lowest value after WRF simulated winds. These
results translate the fact that WRF simulated winds are the best ones
in terms of temporal accuracy. For the wind speed biases, CCMP was
the one with the best performance, although closely followed by WRF
and NCEP-CFSR wind speed data. For the wind direction biases, the
NCEP-GFS is the one with the lowest value, with CCMP showing the
second best weighted mean bias. Looking at all the error metric weighted
means, WRF and CCMP clearly stand out when compared to the other
databases, generally showing winds closest to the measurements.

If analysis is restricted to satellite-derived winds, CCMP is clearly the
one with the most accurate wind data, being the only exception the
wind direction STDE and wind speed correlation coefficient where
IFREMER-BWF shows the best scores. Even for the remaining error
metrics, IFREMER-BWEF is the satellite-derived database with the lowest
errors after CCMP. QuikSCAT is in general the one with the highest
errors among the satellite-derived wind data sources, and only in the
wind speed bias it does not show the highest errors (NCDC-BSW
showed the highest wind speed weighted mean bias among the
satellite-derived wind data). These better performances of blended
satellite products over QuikSCAT are in accordance with the findings
of Ruti et al. (2008).

If analysis is now restricted to several reanalyses and analyses,
NCEP-CFSR shows the lowest overall errors. The fact that this reanalysis
is the only one that includes an ocean model in its architecture is clearly
contributing to this good performance in terms of offshore wind
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Fig. 2. Wind regimes at the buoys.
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Table 3
Statistics of the comparison between alternative sources of offshore wind data and buoy wind measurements. The bold and underlined values correspond to the lowest errors for each
statistical metric, for guidance.

Buoy Database RMSE Bias STDE R* N
Speed Direction Speed Direction Speed Direction Speed Direction
Pefias WRF 193 47,54 0.26 4.21 1.91 4735 0.86 0.69 412
QuikSCAT 21N 57.79 1.18 —3.03 244 57.71 0.80 0.63
ccmp 2.16 52.40 0.02 0.34 216 5240 0.81 0.64
NCDC-BSW 263 58.69 1.25 0.63 232 58.69 0.81 0.63
IFREMER-BWF 242 5248 0.89 —0.54 226 5248 0.82 0.65
MNCEP-CFSR 207 45.08 0.16 340 2.06 44.95 0.84 0.74
ERA-Interim 2,59 61.99 0.93 2,14 242 61.95 0.76 0.65
NASA-MERRA 2.14 51.37 0.03 0.86 214 51.36 0.81 0.67
NCEP-RII 397 60.84 1.57 10.15 3.64 5999 0.59 0.57
NCEP-FNL 233 48.82 0.70 —1.21 222 48.81 0.81 0.69
NCEP-GFS 2.26 4877 0.40 —0.11 222 48.77 0.81 0.69
Bares WRF 1.60 30.82 0.06 —4.06 1.60 30.55 091 0.90 304
QuikSCAT 1.70 40.56 0.41 —11.50 1.65 38.89 0.91 0.81
CccmP 1.56 31.07 0.15 =773 1.55 30.10 0.92 0.91
NCDC-BSW 1.70 46.74 0.55 —10:20 1.61 45.61 091 0.72
IFREMER-BWF 1.44 33.28 0.22 —747 1.42 3243 0.93 0.89
MNCEP-CFSR 1.81 34.59 —0.28 —6.83 1.79 330 0.89 0.84
ERA-Interim 227 45.82 0.19 —5.51 226 4549 0.80 0.90
NASA-MERRA 1.94 36.08 —098 —6.44 1.67 35.50 0,90 0.89
NCEP-RII 327 50.82 0.75 —328 3.18 50.72 072 0.62
NCEP-FNL 1.82 3385 0.46 —6.04 1.76 33.30 0.89 0.84
MNCEP-GFS 1.84 36.61 —-0.19 —5,86 1.83 36.14 0.88 0.84
Villano WRF 1.60 3243 0.24 3.20 1.59 3228 0m 0 357
QuikSCAT 1.61 40.18 0.55 282 1.51 40,09 092 0.87
ccMmp 1.56 34.96 0.16 1.63 1.55 3493 091 09
NCDC-BSW 1.59 48.14 0,78 275 1.38 48.06 093 073
IFREMER-BWF 1.49 3232 0.34 334 1.45 3215 093 0.90
MNCEP-CFSR 1.76 37.88 —-0.13 0.96 1.75 37.86 0.89 0.88
ERA-Interim 242 41.20 0.61 9.44 234 40.10 0.80 091
NASA-MERRA 1.62 37.63 —0.46 5.12 1.55 3728 092 0.90
NCEP-RII 281 51.27 023 8.69 280 50.53 0.73 0.70
NCEP-FNL 230 38.40 1.27 1.78 1.92 38.36 0.87 0.88
NCEP-GFS 1.72 3591 0.13 0.80 L7 3590 0.90 0.90
Silleiro WRF 1.64 4744 017 3.57 1.63 47.30 091 0.70 186
QuikSCAT 1.31 53.52 0.18 5.09 1.30 5328 0.94 0.73
ccMmp 139 4332 —0.04 —1.34 1.38 4330 093 0.:85
NCDC-BSW 1.78 55.21 0.65 6.87 1.66 54.78 090 0.56
IFREMER-BWF 1.44 41.97 —0.06 2.55 1.43 41.89 093 0.84
NCEP-CFSR 1.62 49.26 -0,03 0.55 1.62 49.26 091 0.80
ERA-Interim 246 57.24 0.98 9.78 225 5639 0.82 0.82
NASA-MERRA 1.89 48.53 —.58 3.65 1.80 48.39 0.89 0.80
NCEP-RIl 3.92 6532 1.30 9.81 370 64.57 0.54 0.37
NCEP-FNL 3.07 48.86 —202 —1.68 k| 48.83 0.84 0.76
NCEP-GFS 1.65 47.29 —0.15 —0.37 1.64 4728 090 0.78
Cadiz WRF 1.57 4389 -0.03 —0.13 1.57 43.89 090 0.81 202
QuikSCAT 1.51 48,63 0.27 37 1.48 48.49 093 0.69
ccmMp 1.68 397 —-0.12 3.56 1.67 39.01 0.89 0.79
NCDC-BSW 1.57 55.02 0.63 0.71 1.43 55.02 0.92 0.76
IFREMER-BWF 1.61 4423 0.05 6.19 1.61 4379 0.90 0.75
MCEP-CFSR 1.85 40,09 0.17 5.54 1.84 39,70 0.87 0.82
ERA-Interim 246 55.84 —-0.03 5.65 246 55.56 073 0.79
NASA-MERRA 2.08 4731 —0.85 3.19 1.90 47.20 0.85 0.79
NCEP-RII 3.20 69.83 —0.36 285 3.18 69.77 054 0.44
MNCEP-FNL 226 49.03 0.90 11.14 2,08 47.75 0.84 0.69
NCEP-GFS 1.74 36.52 012 386 1.74 3631 0.89 0.85
Weighted mean WRE 1.69 39.85 017 329 1.68 39.69 0.90 0.80 -
QuikSCAT 1.89 48.09 0.61 5.10 1.77 47.65 0.89 0.75
ccmp 1.72 40.72 0.10 277 1.72 4048 0.88 0.81
NCDC-BSW 1.93 52.68 083 3.95 1.74 52.37 0.89 0.68
IFREMER-BWF 1.75 41.08 0.39 N 1.69 40.79 0.90 0.80
MCEP-CFSR 1.85 4098 016 345 1.84 40.74 0.87 0.81
ERA-Interim 245 52.09 058 6.08 235 51.60 0.78 0.80
NASA-MERRA 1.93 4391 0.52 374 1.82 43,67 0.87 0.80
NCEP-RII 343 58.23 0.87 731 3.28 57.68 0.64 0.57
NCEP-FNL 230 43.19 0.98 3.79 2.04 4288 0.85 0.78
MNCEP-GFS 1.89 49N 022 208 1.88 41.08 0.87 0.81

simulation. NCEP-GFS also shows good performance, surpassing the assimilation systems. Although this fact can cause some inconsistencies
other reanalysis products. Analysis products, unlike reanalysis, make in their data homogeneity over time (Carvalho et al,, 2014), it may also
use of the most recent and up-to-date NWP operational model configu- produce better results. Furthermore, NCEP-CFSR and NCEP-GFS are the
ration, bug fixes, updates and improvements in the measured data reanalysis/analysis products with finer resolution, which can also be
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related to their good performances. Oppositely, NCEP-RII is clearly the
database with the highest errors among all the databases considered
here, mainly in terms of temporal accuracy (RMSE, STDE and R?). This
is certainly related to the fact that this reanalysis is the database with
the coarsest spatial resolution, which results in the fact that the closest
NCEP-RII point to each buoy is about 100 km distant and, obviously,
higher errors are to be expected.

There seems to be present a tendency for WRF, QuikSCAT, NCDC-
BWF, IFREMER-BWF, ERA-Interim, NCEP-RII and NCEP-FNL to overesti-
mate the wind speed, since in all buoys these databases show positive
wind speed biases. Only in Silleiro (CCMP, IFREMER-BWF, NCEP-FNL)
and Cadiz (WRF, CCMP, R1l and ERA-Interim) an underestimation of
the wind speed by some of these databases is present. QuikSCAT
tendency to overestimate the wind speed was previously reported for
the Pacific (Ebuchi et al,, 2002) and Indian Ocean (Satheesan et al.,
2007), and also for the Iberian Peninsula Atlantic coast (Alvarez et al.,
2013; Carvalho, Rocha, Gomez-Gesteira, et al.,, 2013). As for NWP
models, this offshore wind speed overestimation might be explained
by the fact that normally NWP models do not include an ocean model
in their code (only NCEP-CFSR does), representing the ocean as a
constant flat surface. Obviously, real ocean tides and swells produce
variations in the ocean surface height, meaning higher and variable
roughness lengths. Therefore, NWP models will consider ocean areas
with lower roughness values, meaning lower friction between
atmosphere and ocean surface that produces higher surface wind
speeds. Oppositely, NASA-MERRA reanalysis show a tendency to
underestimate the wind speed, with negative biases for all buoys except
in Pefias. CCMP, NCEP-CFSR and NCEP-GFS do not seem to have any
tendency to bias the data.

Moreover, the spatial resolution of the databases seems to influence
their performance, with the finest resolution products (WRF and
satellite-derived databases) showing better results than the coarser
databases (NCEP-RII, NCEP-FNL and ERA-Interim). From the results
presented in Table 3 all databases show poorer performance for Pefias
buoy, which is the closest to the coast. The difference between the
error figures for Pefias and the remaining buoys is more pronounced
for all satellite-derived products, especially for QuikSCAT. This issue is
related to land masking limitations, which are typical of satellite-
derived wind data. Since CCMP and IFREMER-BWF blend data from
several satellites with NWP output (NCDC-BSW only considers wind
direction data from NWP, not blending any NWP wind data), they are
able to attenuate these land masking effects for areas near the coast.
However, NWP-derived winds also show worse results for this location,
albeit less markedly than satellite-derived winds for the remaining
buoys. Although NWP modelled data does not suffer from land masking
limitations, these coastal winds are very dependent on the surrounding
topography (Fig. 2). As the Cape of Pefias is close to a mountain range
with very complex orography, NWP models are unable to accurately
simulate these terrain-induced wind flows, mainly because of their lim-
ited resolution. Moreover, coastal areas are characterized by land-sea
gradients and discontinuities (land use, topography, temperature, etc.)
that are not easily captured by NWP models, Since WRF is the modelled
dataset with the finest spatial resolution here considered, it is able to
better resolve these coastal wind circulations, partially mitigating
these issues and producing the best results to this, and the others,
buoys locations. These better performances of high resolution NWP
modelled offshore wind data over satellite-derived data were previously
reported by Penabad et al. (2008).

Looking at the number of available simultaneous and valid data
records (N) considered on the statistical results depicted in Table 3
and to the temporal sampling of each dataset, QuikSCAT is the one
that limits the number of available records due to its lower temporal
sampling and also large amount of discarded (missing/poor quality)
data. NWP-derived winds do not suffer from missing/erroneous records,
and the satellite data blended products show only few data gaps.
Therefore, it becomes interesting to repeat the results of Table 3 but

87

without considering QuikSCAT. This way, it is possible to obtain much
more data records for this comparison: an increase on averaged N for
all buoys from about 300 to nearly 1300, meaning almost 100%
availability (remembering that discarding QuikSCAT all other databases
offer at least 4 records per day). These results are presented in Table 4,
where only the weighted mean results are shown.

By considering a higher number of compared records, it becomes
possible to see that WRF is still the database with the overall best results
but now mainly for the wind speed. IFREMER-BWF is now the database
with the best performance for the wind direction, and also for the wind
speed after WRF. Although CCMP and IFREMER-BWF show similar
results, by considering a higher number of wind data the latter is able
to surpass CCMP, except for the wind speed biases where CCMP is still
the best.

3.2. Error dependence on measured wind speed

In this section it will be assessed if the wind speed and direction data
derived from the alternative wind data sources show any variation or
dependence with the measured speed (i.e., if the satellite-derived and/
or NWP modelled winds show a better or worse performance in the
presence of weak or strong winds). To this end, the wind speed RMSE
and bias are computed for four different bins: when measured winds
are below 4 m-s~'; between 4 and 8 m-s ™ '; between 8 and 12 m-s™'
and above 12 m-s~ . Table 5 shows these results in terms of the weighted
mean of all buoys.

All databases show higher errors in the presence of low and strong
wind speeds, and consequently better performances for intermediate
ones (between 4 and 12 m-s~ ). IFREMER-BWF seems to show the
worst performance only for low wind speeds, improving their accuracy
with increasing wind speeds. Conversely, NCEP-CFSR and NASA-MERRA
show the best results for low wind speeds, with its errors increasing for
wind speeds above § m-s~' (mainly in terms of RMSE). This behaviour
was expected for scatterometer-derived data such as QuikSCAT, since
this kind of instrument has known limitations in the presence of low
and strong wind speeds. Weak winds produce very low (or none)
amounts of backscatter, which scatterometers have difficulties in
measuring. Strong winds can only produce proportional backscatter in
the ocean surface until a certain threshold, after which no more
backscatter is produced even if the wind speed keeps increasing.

A remarkable issue is that all databases show positive high biases for
low wind speeds, which decrease in magnitude and pass from positive
to negative with increasing wind speed. For the strongest wind speed
bin, these biases are now negative (except QuikSCAT) but high in mag-
nitude again. The only exception is QuikSCAT, which systematically
shows positive biases. This reflects the fact that all databases have a
tendency to overestimate weak winds and underestimate strong
winds, with the over/underestimation tendencies being minimized in
the presence of intermediate wind speeds. Li et al. (2013) also
confirmed this behaviour.

3.3. Weibull PDFs

In this section, the wind speed PDFs assuming a Weibull distribution
are computed for measured and alternative sources derived wind data.
Through these PDFs, it is possible to assess which of the alternative
sources of offshore wind data offers a more accurate characterization
of the local wind speed distribution. Assessing the wind speed distribu-
tion accuracy of each database is of particular importance for offshore
wind energy assessment applications, which traditionally fit wind
speed data to Weibull distributions in order to quantify the average
wind energetic potential of a given area. It should be taken into account
that these PDFs translate the wind speed frequency distributions,
meaning that the temporal accuracy of each database will not be
reflected in the PDFs. The Weibull PDFs for all offshore wind data
sources are depicted in Fig. 3.
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Table 4
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Statistics of the comparison between alternative sources of offshore wind data and buoy wind measurements excluding QuikSCAT. The bold and underlined values correspond to the low-

est errors for each statistical metric, for guidance,

Buoy Database RMSE Bias STDE R? N
Speed Direction Speed Direction Speed Direction Speed Direction
Weighted mean WRF 1.72 37.35 0.17 2.56 171 37.26 0.88 0.85 -
cemp 1.78 36.70 0.15 2.74 177 36.56 0.87 0.85
NCDC-BSW 205 49,57 0.73 3.61 1.91 49.38 0.85 0.72
IFREMER-BWF 1.76 36.69 025 3.19 1.73 3651 0.88 0.85
NCEP-CFSR 1.85 37.92 024 288 1.83 37.80 0.86 0.85
ERA-Interim 2,50 48.95 0.50 5.16 241 48.48 0.75 0.84
NASA-MERRA 203 39.90 0.67 4.16 1.88 39.65 0.85 0.83
NCEP-RII 353 55.74 0.84 6.78 339 55.29 0.59 0.62
NCEP-FNL 247 40.01 1.07 3.02 215 39.80 0.82 0.83
NCEP-GFS 1.96 38.20 0.23 2.30 1.94 38.11 0.85 0.85

In general, WRF modelled winds present the best results, with
PDFs very close to the ones derived from measured data. CCMP
seems to be the best database after WRF. In Bares and Villano all da-
tabases show similar PDFs with the exception of NASA-MERRA (in
both) and NCEP-RII (in Bares), which show distinct PDF shapes
when compared with the remaining databases and, especially,
when compared to the PDFs derived from measurements. For the re-
maining buoys, the PDFs show higher disagreements between them-
selves, especially in Pefias and Cadiz. At Silleiro, NCEP-FNL clearly
fails to represent the wind speed distribution frequency, which
might be related to the fact this database has a coarse spatial resolu-
tion (17 lat/lon). Moreover, its nearest grid point to Silleiro buoy is
located close to the coast, which can induce higher errors in its rep-
resentation of coastal circulations.

It is visible that all databases show higher errors in representing the
wind speed distribution in Pefias and Cadiz sites, and it is also on these
buoys that it is seen the highest discrepancies among the several
databases PDFs. As aforementioned, satellites show limitations in
collecting accurate wind measurements in Pefias due to land masking
effects, while NWP modelled data has difficulties in resolving land-sea
discontinuities and small scale terrain-induced atmospheric flows
(that are likely to occur in this complex area in terms of topography)
due to their coarse resolution. Even WRF 5 km spatial resolution is
unable to resolve accurately these flows, although it shows far better
results than the other databases. As for Cadiz, and although this buoy
is considerably distant from the coast (around 55 km), it is located
inside the Gulf of Cadiz, surrounded by land in almost all directions,
which can also originate land masking issues in satellites. Moreover,
the Gulf of Cadiz is also characterized by a complex orography that
favours terrain-induced flows, where NWP models show weaknesses
due to their coarse spatial resolution. Here, WRF finer resolution
seems able to partially resolve these coastal flows, showing a PDF that
practically matches the observed one.

Table 6 shows the wind power flux (Pq,y), the mean (U,;,) and most
probable wind speed (U,,;) values for each database, together with the
respective errors in terms of percentual deviations from the values
derived from measurements. N represents the number of valid wind
speed records of each one of the databases. The weighted mean errors
are calculated using absolute values.

Table 6 confirms the results depicted in Fig. 3. WRF and CCMP
generally show the Weibull distribution parameters closest to the
ones derived from measured data, with NCEP-CFSR, IFREMER-BWF
and NCEP-GFS showing also good results. These reanalyses/analyses
are the ones with the finest resolution, which is certainly related to
their good performances. CCMP shows the lowest deviations when
compared to measured winds in terms of the Weibull A parameter,
mean most probable wind speed. WRF modelled winds show the best
results after CCMP for these deviations. For the k parameter, NCEP-
CFSR shows the lowest deviations, closely followed by WRF. As for the
wind power flux, WRF has the best performance with only 4.5% of
average deviations when compared with the wind power fluxes derived
from observed data. Although NCEP-CFSR and NCEP-GFS show the
lowest wind power flux deviations after WRF, CCMP is also able to
produce good estimations of the wind power flux.

As seen for the statistical analysis of Section 3.1, WRF, QuikSCAT,
NCDC-BWF, IFREMER-BWF, ERA-Interim, NCEP-RIl and NCEP-FNL
show a tendency to overestimate the wind speed and, consequently,
the wind power flux estimations. NASA-MERRA shows the opposite
behaviour, systematically underestimating the mean wind speed and
wind power fluxes. The remaining databases do not seem to have any
tendency to over- or underestimate wind speeds and power fluxes.
However, for the wind power fluxes CCMP always underestimates its
values. Although CCMP does not reveal any over/underestimation
tendency of the wind speed, since the wind power fluxes vary with
the cube of the wind velocities, small underestimations can be
enhanced.

Table 5
Wind speed RMSE and Bias per buoy wind speed bin, The bold and underlined values correspond to the lowest errors for each statistical metric, for guidance.
Buoy Database <4ms! 4-8m-s! g-12 m-s! >12ms!
RMSE Bias RMSE Bias RMSE Bias RMSE Bias
Weighted mean WRF 1.87 0.80 1.61 0.06 1.58 —-0.27 1.64 —0.30
QuikSCAT 1.90 1.07 1.75 0.47 1.89 0.22 212 0.76
CCMP 1.73 0.79 1.65 0.05 1.63 —0.60 197 —0.49
NCDC-BSW 213 1.43 1.90 079 173 0.24 1.77 0.64
IFREMER-BWF 1.87 0.84 1.74 0.40 1.66 —0.06 149 0.03
NCEP-CFSR 1.82 0.88 1.79 ~0.16 1.86 —0.69 207 ~059
ERA-Interim 2.80 2 219 0.52 2,16 —0.38 267 —1.18
NASA-MERRA 1.74 0.80 1.72 —047 205 —1.46 253 —2.08
NCEP-RII 363 242 3.14 0.61 317 —0.44 412 —0.57
NCEP-FML 230 1.26 218 0.49 215 -0.21 240 —-027
NCEP-GFS 1.94 0.90 1.80 0.03 1.82 —049 2.09 —057
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Fig. 3. Weibull PDFs for all offshore wind databases in all buoys.

Again visible in Table 6 is the worst performances off all databases for
Peiias and Cadiz, due to the aforementioned reasons. One remarkable fact
is that the temporal resolution is not a determinant factor to accurately
represent the wind speed distribution at a given site. Although WRF
and NCEP-CFSR have the highest temporal samplings (hourly data) and
show good performances, NASA-MERRA shares their temporal resolution
and is not able to depict the wind speed distributions so accurately. The
6-hourly records of CCMP seem to be sufficient to successfully depict
the wind speed frequency distribution.

4. Conclusions
This study evaluates and compares offshore wind data derived from

satellites (Cross-Calibrated Multi-Platform ocean wind vectors,
QuikSCAT scaterometter, NCDC Blended Sea Winds and IFREMER
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Blended Wind Fields), reanalyses (NCEP-CFSR, ERA-Interim, NASA-
MERRA and NCEP-RII), analyses (NCEP-FNL and NCEP-CFS) and WRF
modelled offshore winds, aiming to determine which one of these data-
bases offers the offshore wind data closest to measurements collected
by buoys moored offshore the Iberian Peninsula Atlantic coast. The find-
ings presented here can be of great value for climate, oceanic, meteoro-
logical and offshore wind energy resource assessment applications that
focus on ocean areas where in situ measured wind data is either not
available or is insufficient and, therefore, alternative sources of offshore
wind data have to be considered.

The results presented in this study show that WRF offshore wind
simulation is the best alternative source to in situ measured offshore
wind data, showing the highest temporal accuracy (RMSE, STDE and
correlation coefficients) and offshore wind power flux estimations.
However, offshore wind data taken from CCMP database shows the
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Table 6
Wind power flux, mean and most probable wind speed for all databases and respective errors, The bold and underlined values correspond to the lowest errors for each statistical metric, for
guidance,

Buoy Database A Errar 3 Error U Error Uprats Error P Error N
(=) (=) (ms™ 1) (m-s™1) (W-m~2)

Pefias Buoy 6.76 - 1.74 - 6.03 - 4.14 - 404 - 7048
WRF 722 6.7% 1.82 4.3% 6.41 6.3% 4.65 12.2% 452 11.9% 8784
QuikSCAT 8.46 25.1% 1.98 13.7% 746 23.7% 593 43.2% 604 49.4% 587
ccmp 6.80 0.5% 1.91 9.7% 6.03 0.0% 462 11.4% 345 —14.5% 1464
NCDC-BSW 8.40 24.1% 1.94 11.2% 7.43 23.2% 5.77 39.3% 560 38.6% 1388
IFREMER-BWF 7.88 16.5% 1.84 5.6% 7.01 16.2% 5.14 24.1% 538 33.2% 1440
NCEP-CFSR 7.36 B.8% 1.88 8.1% 6.52 8.1% 492 18.8% 449 11.1% 8784
ERA-Interim 7.99 18.1% 230 31.9% 7.08 17.3% 623 50.3% 421 4.1% 1464
NASA-MERRA 6.98 3.2% 202 15.9% 6.18 2.6% 4.97 20.0% 350 —134% 8784
NCEP-RI 924 36.6% 1.85 59% 821 36.1% 6.05 46.1% 817 102.2% 1464
NCEP-FNL 77 14.0% 1.85 6.4% 6.85 13.5% 5.07 224% 504 247% 1464
NCEP-GFS 7.48 10.6% 1.81 42% 6.65 10.3% 481 16.1% 491 21.6% 1435

Bares Buoy 870 - 2.22 - 7.74 - 6.65 - 551 - 7470
WRF 8.55 - 1.8% 218 —2.0% 7.57 —-2.2% 6.44 -3 544 -1.3% 8784
QuikSCAT 877 0.7% 207 —6.6% 775 0.1% 6.38 —4.0% 628 14.0% 425
ccmp 8.46 —2.9% 2,18 - 1.8% 7.50 -31% 6.38 —4.0% 514 —6.6% 1464
NCDC-BSW 9.13 4.9% 229 3.0% 8.08 4.4% 7.10 6.8% 6503 9.5% 1461
IFREMER-BWF 87 0.0% 217 —-2,0% 7.72 -0.2% 6.56 -1.3% 567 29% 1440
NCEP-CFSR 8.25 —52% 2,08 —-6.1% 7.31 —5.6% 6.03 —-9.2% 514 —6.7% 8784
ERA-Interim 8.58 - 1.4% 241 8.6% 7.60 -1.7% 6.87 34% 490 —-11.1% 1464
NASA-MERRA 7.32 —15.9% 2,15 —3.4% 6.48 —16.3% 546 —-17.9% 361 —34.4% 8784
NCEP-RII 9,60 10.3% 1.80 —14.3% 8.51 10.0% 6.49 —24% 871 58.1% 1464
NCEP-FNL 8.90 2.3% 217 —24% 7.89 1.9% 6.69 0.7% 600 8.9% 1464
NCEP-GFS 8.35 —4,0% 202 —-92% 740 —4,3% 5.95 —10.5% 553 0.5% 1435

Villano Buoy 843 - 205 - 7.49 - 6.08 - 556 - 8745
WRF 8,66 27% 222 82% 7.68 2.5% 6,60 8.7% 546 —1.6% 8784
QuikSCAT 8.73 3.5% 2,10 27% 771 2.8% 642 57% 806 9.0% 435
ccmp 8.39 —0.5% 2.26 10.3% 7.44 —0.8% 6.48 6.6% 492 —11.5% 1464
NCDC-BSW 9.25 9.7% 244 19.3% 8.19 93% 7.46 227% 587 5.7% 1461
IFREMER-BWF 8.66 27% 222 87% 7.68 2.4% 6.62 9.0% 549 —-1.1% 1440
NCEP-CFSR 829 - 1.6% 2,19 6.8% 7.34 -2.0% 6.27 32% 495 —10.8% 8784
ERA-Interim 8.497 6.5% 237 15.6% 7.95 6.1% 7.12 17.1% 560 0.9% 1464
NASA-MERRA 7.79 —7.6% 2.31 12.8% 6.91 —7.8% 6.09 03% 395 —28.8% 8784
NCEP-RII 8.82 4.6% 2.00 —24% 7.82 4.3% 6.23 2.5% 631 13.5% 1464
NCEP-FML 9,65 14.4% 228 11.5% 8.55 14.0% 7.50 23.4% 705 26.9% 1464
NCEP-GFS 8.49 0.8% 213 42% 7.52 0.4% 6.31 3.9% 547 —1.5% 1435

Silleiro Buoy 7.16 - 1.88 - 6.35 - 4.77 - 421 - 7754
WRF 7.66 7.0% 201 74% 6.78 6.9% 5.45 14.2% 452 7.3% 8784
QuikSCAT 6,84 —4,5% 1.66 —-11.3% 6.08 —4.3% 394 —17.4% 505 20.0% 255
ccmp 722 0.8% 1.97 4.8% 6.40 0.7% 5.03 54% 402 —4.4% 1464
NCDC-BSW 829 15.8% 225 19.9% 733 15.4% 6.38 33.8% 475 12.9% 1461
IFREMER-BWF 721 0.7% 2.08 10.7% 6.38 0.5% 526 102% 370 —12.0% 1440
NCEP-CFSR 7.26 1.5% 2.00 6.7% 643 1.3% 5.14 7.8% 393 —6.6% 8784
ERA-Interim 8.62 20.4% 213 13.7% 7.63 20.2% 6.41 34.3% 568 35.0% 1464
NASA-MERRA 6.51 -9.0% 221 17.8% 577 —9.1% 4.96 4.0% 261 —38.0% 8784
NCEP-RII 8.82 23.1% 2.00 6.5% 7.82 23.1% 6.23 30.6% 631 49.9% 1464
NCEP-FNL 4.64 —35.1% 1.95 4.2% 411 —35.2% 322 —32.5% 147 —B5.0% 1464
NCEP-GFS 7.27 1.6% 1.99 G.0% 6.44 1.4% 512 73% 4m —4,7% 1435

Cadiz Buoy 7.21 - 2,00 - 6.39 - 5.10 - 384 - 8770
WRF 7.32 1.6% 2.06 2.8% 648 1.4% 529 39% 383 —0.1% 8784
QuikSCAT 7.22 0.2% 1.69 —15.5% 642 0.5% 4.25 - 16.6% 579 51.0% 237
ccmp 6,93 —3.8% 21 5.6% 613 —4.1% 5.12 0.4% 325 —15.3% 1464
NCDC-BSW 7.79 81% 235 175% 6.89 7.8% 6.15 20.7% 377 —1.7% 1458
IFREMER-BWF 7.27 0.8% 213 6.6% 6.42 0.5% 5.40 5.9% 359 —6.5% 1440
NCEP-CFSR 7.46 3.5% 2.06 3.1% 6.61 3.4% 540 6.0% 398 3.8% 8784
ERA-Interim 7.04 —23% 2,70 35.2% 6.28 —1.8% 593 16.4% 256 —33.2% 1464
NASA-MERRA 6.30 —12.5% 2,16 7.8% 5.59 —-125% 472 —7.4% 243 —36.7% 8784
NCEP-RI 6.95 —3.6% 217 8.7% 6.16 —3.6% 523 2.6% 307 —20.0% 1464
NCEP-FNL 8.27 14.7% 2.18 9.0% 7.31 144% 6.24 224% 486 26.6% 1464
NCEP-GFS 7.52 44% 2.00 0.0% 6.66 43% 532 4.4% 424 10.6% 1435

Weighted mean WRF - 3.9% - 49% - 18% - 8.4% - 4.5% -
QuikSCAT 5.8% 10.0% 6.3% 17.4% 28.7%
ccmp 1.7% 6.4% 1.7% 5.5% 10.5%

NCDC-BSW 125% 14.2% 12.0% 247% 13.7%
IFREMER-BWF 4.2% 6.7% 4.0% 10.1% 11L.1%
NCEP-CFSR 4.1% 6.2% 41% 9.0% 7.8%

ERA-Interim 9.7% 21.0% 9.4% 243% 16.9%
NASA-MERRA 9.7% 11.5% 9.7% 9.9% 30.3%
NCEP-RII 15.7% 7.6% 15.4% 16.8% 48.7%
NCEP-FNL 16.1% 6.7% 15.8% 20.3% 30.4%
NCEP-GFS 4.3% 4.7% 4.2% 8.4% 7.8%
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lowest errors in terms of the mean wind speeds (biases and mean wind
speed) and, together with IFREMER-BWF, a temporal accuracy similar to
the WRF simulation. Therefore, in general CCMP and IFREMER-BWF can
be seen as the best alternatives to WRF high resolution modelled offshore
winds, if such results are unavailable. Specifically for offshore wind ener-
gy resource assessment, NCEP-CFSR reanalysis and NCEP-GFS analysis
data can also be used with confidence as alternative to WRF modelled
data, with better performances than CCMP and IFREMER-BWF.

While WRF, QuikSCAT, NCDC-BWF, IFREMER-BWF, ERA-Interim,
NCEP-RII and NCEP-FNL show a tendency to overestimate the wind
speeds and wind power fluxes estimates, NASA-MERRA shows an oppo-
site tendency. CCMP, NCEP-CFSR and NCEP-GFS do not seem to have any
tendency to over/underestimate wind velocities and wind power fluxes
estimates (except CCMP, which seems to systematically underestimate
the wind power fluxes). A common feature to all databases is that all of
them overestimate low wind speeds and underestimate strong winds
(except QuikSCAT, which sows an overestimation tendency transversal
to all wind velocities magnitudes). The best performances are usually
obtained in the presence of intermediate wind speeds (4-12 m:s™ '),

Spatial resolution seems to have an important impact on the
databases accuracy. The ones with finer spatial resolution are typically
the ones with the best results (with some exceptions such as NASA-
MERRA and NCDC-BSW). Since the in situ data here used is strongly
influenced by the neighbouring topography, terrain characteristics and
land-sea discontinuities, products with finer spatial resolutions are
more likely to attain better performances. Although satellite-derived
winds have finer spatial resolutions when compared to reanalysis and
analysis products, they suffer from land masking issues that limit their
accuracy in retrieving coastal winds. Temporal sampling rate does not
seem to have such an impact, at least in what is related to the ability
to represent local wind speed distributions (although it is advisable to
use databases with at least 6-hourly records). However, temporal
resolution of the wind products is an important characteristic in terms
of the ability to accurately represent local wind circulation patterns,

Although the advantages in using mesoscale NWP models for high
resolution offshore wind modelling are shown in this study, such tasks
require considerable computational resources and time to obtain
quality results. Moreover, it is known that satellite-derived wind data
has its strength in open ocean areas. Therefore, the value of satellite-
derived wind data cannot be disregarded, and these kinds of offshore
wind data sources have to be seriously considered when searching for
alternative sources of wind information in particular for wide ocean
areas. Since the buoys considered in this study are distributed through
a wide geographical area, where each buoy shows its own local wind
micro-climate, the conclusions and findings provided in this study can
be considered with confidence for other areas, in particular coastal ones.
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Chapter 6 — Climate change impacts on

future wind energy resource over Europe

This chapter presents the investigation about whether climate changes due to
anthropogenic activities will impact the future wind energy resource in Europe. This
research is presented in the form of an article presently submitted to an international peer-
reviewed scientific journal. Due to the fact that this article is presently under review, the
submitted version of this article is presented below in its original submitted form. In this
article is included the methodology followed, area under study, CMIP5 present and future

climate wind data used, complete and detailed introductory notes and state of the art.

94



95



Manuscript

Click here to download Manuscript: manuscript.docx
Click here to view linked References

10

11

12

13

14

15

16

17

18

19

20

21

Potential impacts of climate change on European
wind energy resource under the CMIP5 future
climate projections

Carvalho, D. ", Rocha, A. ), Gdmez-Gesteira, M., ', Silva Santos, C. @

©) CESAM - Department of Physics, University of Aveiro, Campus Universitdrio de Santiago, 3810-193

Aveiro, Portugal. e-mail: david.carvalho@ua.pt

®) CESAM - Department of Physics, University of Aveiro, Campus Universitdrio de Santiago, 3810-193

Aveiro, Portugal. e-mail: alfredo.rocha@ua.pt

) EPHYSLAB - Environmental Physics Laboratory. Facultad de Ciencias. Universidad de Vigo, 32004

Ourense, Spain. e-mail: mggesteira@uvigo.es

“ Instituto Superior de Engenharia do Porto, Rua Dr. Antdnio Bernardino de Almeida 341, 4200-072

Porto, Portugal. e-mail: cmi@isep.ipp.pt

Corresponding author: David Carvalho

CESAM - Department of Physics, University of Aveiro, Campus Universitdrio de Santiago, 3810-193

Aveiro, Portugal
E-mail: david.carvalho@ua.pt
Tel: 00351 234 370 356

Fax: 00351 234 378197

96



22

23
24
25
26
27
28
29
30
31
32
33
34

35

36
37
38
39
40
a1
42

43

45
46
47

48

49

50

Abstract

This work focused on possible impacts of climate changes on future European wind energy resource,
using the latest IPCC future climate projections derived from the CMIP5 project. Although wind energy
plays a key role in the goal of replacing fossil fuels by renewable energy sources, and thus minimize
future climate changes, it is also sensitive to climate change itself due to hypothetical changes in the
future atmospheric flow patterns. This study focuses on Europe, one of the main areas in terms of
installed wind-derived electricity generating capacity in the world. This work comprised two stages:
first, to assess the CMIP5 GCMs that best reproduce contemporary near surface wind speeds over
Europe. The validation of these CMIP5 GCMs wind data for the contemporary period serves as a solid
and important background for the upcoming CMIP5 GCMs downscaling initiatives to regional and local
scales. Secondly, data from the best GCMs was used to quantify and assess future changes in the
wind energetic resource and their geographical distributions over Europe, together with its intra- and
inter-annual variability. Research about the GCMs wind climate future projections provides an

important preliminary picture of changes in large-scale wind energetic resource over Europe.

The results presented show that, although the CMIP5 global models are still not able to represent
satisfactorily the contemporary wind speed climatology over Europe, the models HadGEM2-ES,
HadGEM2-CC, ACCESS 1.3 and ACCESS 1.0 showed the best ability to represent the contemporary
near surface wind speed climatology over Europe. Using data from these models, the future European
wind energy resource tends to be lower than the one presently available, due to a decreasing
tendency of the large-scale wind speeds over the current century, especially in the end of the current
century and under scenarios of stronger radiative forcing. Some exceptions to this decreasing
tendency of future wind speeds are detected in Central/Northern Europe, Turkey and in the Iberian
Peninsula, where the wind energy resource can slightly increase in future. Changes can be expected
in the intra-annual variability due to wind speeds decrease in cold seasons and increase in warmer
seasons, particularly at the end of the current century and under scenarios of stronger radiative
forcing. Oppositely, no significant changes in the inter-annual variability are expected over Europe

during the current century.

The validation results of this study showed the poor ability of the CMIP5 global medels to represent

realistically the past-present European wind speed climatology, and the use of such coarse models
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can be considered as somewhat over-simplistic and insufficiently detailed for the desired purposes.
Notwithstanding, the findings presented herein can serve as an important background for future
downscaling initiatives of CMIP5 data to regional and local scales, and should be seen as a
preliminary warning that a continuous increase of greenhouse gases emissions can jeopardize our
ability to mitigate such emissions, at least in what is related to the role and contribution of wind energy.
However, it needs to be borne in mind the significant uncertainty associated to global models future
climate projections. Thus, the information provided by these models should be seen as a preliminary
picture of the large scale future tendencies of the wind energy resource, and further research focused
on these themes should be performed by downscaling CMIP5 GCMs output to regional and local
scales in order to better represent the topography and land use and thus better simulate near surface

winds.

Keywords: Wind energy, Climate change; CMIP5; IPCC; Global models; Europe
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1 — Introduction

The Intergovernmental Panel on Climate Change (IPCC) Assessment Report 5 (IPCC AR5,
2013) includes the latest existent knowledge about the scientific, technical and socio-
economic aspects of climate change. According to this report, the 1983-2012 period was
likely the warmest 30-year period of the last 1400 years in the Northern Hemisphere. The
Wold Meteorological Organization (WMO) also confirmed this global warming trend: based
on measured temperatures since 1850, 13 of the 14 warmest years were observed in the 21*
century. IPCC ARS projects that global temperatures can rise 1 to 5?°C over the next 100
years, depending on the amounts of greenhouse gases (GHG) emitted and the sensitivity of
the climate system. As for sea-level changes, the same report foresees a rise comprised
between 28 and 98 cm by the end of the current century, and to more than 3 meters by 2300.
If no GHG emission mitigation strategies are employed, the Arctic Ocean will likely become
virtually ice-free in summer before the middle of the current century (IPCC AR5, 2013). This
report also confirms that it is virtually certain (>95%) that human activity has been the main
cause of the observed increasing temperatures since the mid-20" century. Other possible
factors, such as natural internal variability of the climate system and natural external forcings
(variation of solar activity, activity of volcanoes, etc.), are considered to have a marginal
contribution to global warming. These human-induced climate changes are mainly forced by
the continuously increasing emissions of GHG (mainly CO,) to the atmosphere, being well
established that one of the main emission sources of GHG is the electricity generation from

fossil fuels combustion (IPCC AR4, 2007; IPCC ARS5, 2013).

Renewable energies are a cornerstone in the reduction of GHG emissions and consequent
mitigation of changes in the global climatic system. Of all the renewable energy sources
presently used for electricity generation, wind is one of the leaders in terms of installed
generating capacity, fastest growth and technological maturity, being the second leading
renewable energy source worldwide only exceeded in terms of installed capacity by

hydropower (Santos et al., 2015). Europe has been leading the efforts in expanding the
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contribution of renewable energy sources to the overall electricity production and
consumption, setting a binding target of 20% of energy obtained from renewable sources to
achieve by 2020 (Carvalho et al., 2013a; Pryor and Barthelmie, 2010). Wind can provide up
to one third of this target value and, considering the current wind-derived energy growth rate.
It is projected that its electrical generating installed capacity can increase up to fivefold in the

upcoming decade (de Vries, 2008a and 2008b).

Although wind energy growth is part of the solution to reduce GHG emissions and
consequently mitigate future climate change, this renewable energy source is sensitive to
climate change itself, due to hypothetical changes in the future atmospheric flow patterns.
Since the wind energetic potential varies with the wind speed cubed, even apparently small
variations in future wind circulation patterns and characteristics can strongly impact future
wind energy production (Carvalho et al., 2012b). Variations in the future mean wind speeds
and their geographical distribution will change the wind resource of a given region, while
changes in its future inter- and intra-annual variability can affect the reliability of the produced
wind-derived electricity (Pryor and Barthelmie, 2010). The higher the intra-annual variability
(this is, the variability within a year-period), the more variable will be the injection of the
produced energy into the electrical grid, causing supply-demand balancing problems and
enhancing the need to perform short-term wind energy production forecasts. Inter-annual
variability (the variability between different years) is a key issue for the economic feasibility of
a wind farm. The typical lifetime of wind farms currently in operation is typically 20 to 30
years, and the question of whether the wind farm expected energy yield will significantly vary

during its lifetime can determine the success or failure of the wind farm project as a whole.

IPCC ARS relies on the World Climate Research Programme (WCRP) Fifth Coupled Model
Intercomparison Project (CMIP5), a globally coordinated set of global coupled atmosphere-
ocean general circulation models (AOGCMs) simulations (for more details see Taylor et al.,
2012). CMIP5 output, the latest available data regarding future climate change projections,

allows the evaluation of how the models realistically simulate the recent past and present,
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and provides projections of future climate changes from the present date up to 2100 (and
beyond, for some models and experiments). CMIP5 is the successor of the CMIP3, which
served as basis of the IPCC fourth assessment report (IPCC AR4, 2007). When compared to
the older generation models used in CMIP3, the new state-of-the-art models used in CMIP5
offer higher spatial resolutions, improved physical process descriptions, improvements in the
representation of external forcings and interaction between the atmosphere, land use and
vegetation. Moreover, CMIP5 introduced a new breed of AOGCMs: the Earth System Models
(ESMs). ESMs are currently the state-of-the-art models, expanding on AOGCMs by including
additional earth system components such as atmospheric chemistry, biogeochemical cycles,
aerosols, ozone, sulphur and carbon cycles (Taylor et al., 2012; Brands et al., 2013). ESMs
constitute the most comprehensive tools presently available for simulating the climate system
future response to external forcings, in which biogeochemical feedbacks play a key role

(IPCC ARS5).

CMIPS future climate projections, called Representative Concentration Pathways (RCPs),
describe hypothetical future climate scenarios based on the emissions rate of GHG (more
details are available in Moss et al., 2010). These RCPs make use of a broad range of
anthropogenic climate forcings, such as aerosols, GHG, land use and chemically active
gases (Bracegirdle et al., 2013; Meinshausen et al., 2011). When compared to their
predecessors - the IPCC AR4/CMIP3 Special Reports on Emissions Scenarios (SRES) -
RCPs consider new and larger amounts of data such as socio-economic aspects, emerging

technologies, land use and land cover changes (Moss et al., 2010).

This work aims to assess and quantify the impacts of the latest CMIP5 future climate
projections on the wind energetic resource in Europe, one of the main areas in terms of
installed wind-derived electricity generating capacity and one of the main boosters of further
growth and penetration of wind-derived energy in the world. To this end, data from CMIP5
project is used to build future projections of near surface wind speed and energy density

geographical distributions over Europe, and to quantify how different from the past-present
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are the future scenarios for wind energy production. As far as the authors are aware, there is
still no published literature that addresses this issue in light of the new CMIP5 future climate
projections for the European continent as a whole. However, the study of Sterl et al. (2014)
focused on possible impacts of climate changes on future large-scale wind climate over the
Netherlands by downscaling CMIP5 future climate projections, concluding that climate
changes will not likely change Netherlands and the North Sea wind climate beyond the range
of the typical natural climate variability. As for other areas of the globe, the study of Kulkarni
and Huang (2014) considers CMIP5 data on the evaluation of possible changes in surface
wind speeds over North American territory. This work concludes that the projected future
changes in surface wind speeds are moderate and no significant changes in North American
wind power potential are to be expected in the future due to GHG induced climate changes.
Also the study of Chen et al. (2013) uses CMIP5 data to investigate the impact of climate
change on wind speeds, but now for the Chinese territory, concluding that geographical
distributions of wind speed over China at the end of the 21 century do not show significant
differences when compared to those of the last 35 years. Considering earlier IPCC
assessment reports and future climate projections such as the IPCC AR4/CMIP3, and also
downscaling initiatives that followed them such as the PRUDENCE (Christensen and
Christensen, 2007) and ENSEMBLES (ENSEMBLES, 2006) projects, there is a good
background in published studies focusing on climate changes impacts in wind power
resource over Europe. Pryor and Barthelmie (2010) reviewed the published literature
regarding climate change impacts on wind energy. According to this review, by the end of the
current century the mean wind resource in Europe can suffer small magnitude changes, with
indications that wind energy density and annual mean wind speeds in winter can increase in
northern Europe and decrease in the south of the continent (Pryor et al., 2005a; Bloom et al.,
2008; Walter et al., 2006). Santos et al. (2015) analyzed changes in future wind energy
potential over the Iberian Peninsula considering the A1B IPCC AR4/CMIP3 SRES scenario,
downscaled by a regional circulation models (RCM), and concluded that these climate

change projections show significant decreases in the future wind energy production potential
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over most of the Iberian Peninsula. Pryor et al. (2005b) performed a statistical downscaling
of one global circulation model (GCM) on the Baltic States and projected a decrease of the
wind speed and energy density by 2071-2100. Cradden et al. (2012) assessed if climate
changes could affect wind energy development in the UK, considering three different IPCC
AR4/CMIP3 SRES scenarios. The authors concluded that the typical UK wind speed intra-
annual variability (higher in winter and lower in summer) could be larger in the future due to
climate changes, but did not find any conclusive evidence of a marked future change in wind
energy resource in any area of the UK. To sum up, until the present moment there is in the
published research a consensus that no significant changes in future European wind climate
are to be expected due to climate warming. Instead, natural variability seems to be the main
reason for changes in global decadal and centurial wind climatology, and this will likely
continue to be in the upcoming century. Nevertheless, and although significant uncertainty
still remains on how future wind climatologies will change over Europe, several recent
studies have reported a decline tendency in observed near-surface wind speeds and in
indices based on wind power generation during the past decades in Europe (Bakker et al.,
2013; Brazdil et al., 2009; Pirazzoli and Tomasin, 2003; Smits et al., 2012; Vautard et al.,

2010).

The significant uncertainty of these projected climate changes should be borne in mind.
GCMs show strong limitations in realistically represent past and present wind climates
(mainly related to their coarse spatial resolution), whilst RCMs downscaling of these GCMs
output show high inter-model variability and uncertainty regarding the climate change signal
(Pryor and Barthelmie, 2010). Nevertheless, the continuous effort devoted to the evolution of
GCMs (AOGCMs and ESMs included), RCMs and their input data poses the challenge to
continuously investigate their latest future climate projections. Several CMIP5 data
downscaling projects are currently under progress, namely the CORDEX project (http:/wcrp-

cordex.ipsl.jussieu.fr/) and, more specifically, the EURO-CORDEX branch of the CORDEX

project that downscales CMIP5 data for Europe (http://www.euro-cordex.net/). Thus, it

becomes relevant to compare and assess the performance of the several GCMs, in order to

103



201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

select the one(s) with the best performance(s) as candidate(s) for downscaling applications.
This work also aims to assess the performance of CMIP5 GCMs in what is related to their
ability to realistically represent past and present near surface wind climatology in Europe.
This validation is expected to be of great value to downscaling initiatives focused on climate
change impact on wind energy, since no information is presently available regarding the
individual performance of each CMIP5 GCM in representing contemporary near surface
winds. Brands et al. (2013) highlighted the importance of GCM validation for downscaling
applications, assessing which CMIP5 GCMs show better ability to reproduce present climate
conditions in Europe and Africa and, therefore, can be seen as the best candidate(s) for use
in downscaling applications. The authors concluded that the CMIP5 ESM models HadGEM2-
ES and MPI-ESM-LR outperform the other models along the lateral boundaries of the several

CORDEX regional domains.

Thus, the present work comprises two main stages. First, near surface wind speed data from
21 CMIP5 GCMs are compared against a reanalysis dataset, in order to identify the GCM(s)
that best reproduce contemporary near surface wind speeds over Europe. After, data from
these GCMs is used to preliminarily quantify and assess future changes in the large-scale
wind energetic resource and their geographical distributions over Europe, together with its
intra- and inter-annual variability. While the validation of CMIP5 GCMs wind data for the
contemporary period will serve as a solid and important background for the upcoming CMIP5
GCMs downscaling initiatives to regional and local scales focused on wind energy, research
about the GCMs future wind speed projections will provide an important preliminary picture of

potential changes in large-scale wind energy resource over Europe.

2 — Data and methodology

2.1 - CMIP5 data and experiments

CMIP5 GCMs near surface wind data regarding the past-present period and two RCPs future

climate projections were considered in this work. This near surface wind data reports to 10 m
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above ground/mean sea level, while typical wind turbines are placed at 80-120 m above
ground/mean sea level. Since the CMIP5 GCMs do not provide output regarding winds at
these heights, this near surface 10 m wind data was considered as the best estimator of the
wind at typical wind turbines height. Although near surface winds are lower than the ones at
80-120 m, both are highly correlated (Kulkarni and Huang, 2014). Since the aim of this work
is to compare past-present with future winds and not to quantify them, it can be expected that
changes between past-present and future near surface winds are of similar magnitude to the

ones expected at higher heights.

Past-present near surface wind data was extracted from the historical run, performed to
characterize the contemporary period (1986-2005). This run was forced by observed
atmospheric composition changes, both from anthropogenic and natural sources, and time-
evolving land cover (Taylor et al., 2012). Future wind data was obtained from future climate
projections of two RCPs. One somewhat pessimistic, although realistic, which basically
assumes that no GHG mitigation actions will be employed in the upcoming decades and
GHG emission rates will continue to grow at the rates witnessed in the last decades (the
RCP 8.5); and a more optimistic scenario, which foresees a reduction of GHG emissions, the

RCP 4.5.

RCP 8.5 is a “business as usual” emission scenario, characterized by escalating GHG
emissions and high concentration levels of these gases in the atmosphere. RCP 8.5 can be
seen as the projection of future GHG concentration and radiative forcing if no emissions
mitigation strategies are employed until the end of the 21 century. The numerical value
assigned to a RCP translates its radiative forcing present in 2100. Thus, RCP 8.5 radiative
forcing (CO, equivalent emissions) peaks at 2100 with a value of 8.5 W.m™, approximately
1370 ppm of CO, equivalent concentration. The RCP 4.5 is a midrange stabilization
scenario, where GHG emissions are mitigated by policy actions, strategies and technologies,
employed to achieve emission targets before 2100 (Taylor et al., 2012). In this scenario, the

radiative forcing and GHG emissions peak around 2070-2080 with a value of 8.5 W.m™?
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(approx. 650 ppm of CO; equivalent concentration) and stabilizes further on, remaining

constant beyond this peak.

For both RCPs, the following time windows were considered: near future, ranging from 2016
to 2035; medium-term future, from 2046 to 2065; and long term future, from 2081 to 2100.
The spatial domain considered in this work was based on the EURO-CORDEX one, but
slightly expanded in order to include the Portuguese Azores and Madeira archipelagos, and

the Spanish Canary islands.

2.2 - Validation of CMIP5 models

For the assessment of which CMIP5 GCMs best describe the contemporary wind resource
over Europe, all CMIP5 models with available daily average near surface wind speed data for
the historical and the two RCPs here considered were selected. The models that fulfilled

these requisites are listed in Table 1.

Table 1 — Main characteristics of the considered CMIP5 models

Model Modelling Center Type of GCM Horizontal resolution (lat/lon)
ACCESS 1.0 CSIRO-BOM (Australia) ESM 1.25%/ 1.875*%
ACCESS 1.3 CSIRO-BOM (Australia) ESM 1.25%/ 1.875°
BNU-ESM GCESS (China) ESM 2.8%/2.8°
CanESM2 CCCma (Canada) ESM 2.8%/2.8"
CMCC-CMS CMCC (ltaly) AOGCM 20/ 20
CNRM-CM5 CNRM-CERFACS (France) AOGCM 1.42/1.4%
CSIRO-Mk 3.6.0 CSIRO-QCCCE (Australia) AOGCM 1.9%/1.9%
GFDL-CM3 NOAA GFDL (USA) AOGCM 2r/25°
GFDL-ESM2G NOAA GFDL (USA) ESM 22/2.5°
GFDL-ESM2M NOAA GFDL (USA) ESM 2°/2.5°
HadGEM2-CC MOHC (UK} ESM 1.25%/1.875%
HadGEM2-ES MOHC (UK) ESM 1.25%/1.875°
IPSL-CM5A-LR IPSL (France) ESM 1.875%/ 3.75°
IPSL-CM5A-MR IPSL (France) ESM 1.25%/2.5%
IPSL-CM5B-LR IPSL (France) ESM 1.875%/ 3.75%
MIROC-ESM MIROC (Japan) ESM 2.8% /28"
MIROC-ESM-CHEM MIROC (Japan) ESM 2.8%/28"
MIROCS MIROC (Japan) AOGCM 1.42/1.4¢
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MPI-ESM-LR MPI-M (Germany) ESM 1.9%/1.875°

MPI-ESM-MR MPI-M (Germany) ESM 1.9%/1.875°

MRI-CGCM3 MRI (Japan) AOGCM 1.125%/1.125°

The validation of these models was performed as follows. First, and due to the fact that these
21 models have different native horizontal resolutions (Table 1), all models historical near
surface wind speed grids were remapped to a regular 1.52 lat/lon grid (an intermediate
resolution given the native resolutions of all models). Afterwards, 20-year historical wind
speed medians (instead of the mean, in order to avoid normality fitting restrictions and outlier
contamination) were computed from the daily near surface wind speed time series for all
models and grid points, and each model historical wind speed median grid was compared
with ERA-Interim wind speed 20-year median grid. ERA-Interim reanalysis were selected as
“real wind” data source, not only because they are widely recognized as a superior quality
reanalysis product (especially for the European territory), but also because it is the official
validation dataset used for the CORDEX CMIP5 dynamical downscaling initiatives (Brands et
al., 2013). The most important aspect to assess in terms of validation is if the wind speed
data from the CMIP5 GCMs and from ERA-Interim come from the same continuous
distribution. Since wind speeds are generally not normally distributed, the non-parameteric
two-sample Kolmogorov-Smirnov (KS) test (Gibbons and Chakraborti, 2011) was applied to
the CMIP5 GCMs and ERA-Interim wind speed datasets for each grid point, with a 5%
significance level. The KS test tests the null hypothesis that two samples belong to the same
continuous distributions (with the same shape and location), against the alternative
hypothesis that they are from different distributions (different in shape and/or location). The
CMIP5 GCMs with the highest number of grid points where the KS test shows that their wind
speed data is from the same distribution as ERA-Interim were considered the ones that
better represent the contemporary (historical) period wind climatology over Europe and,

consequently, those used to assess climate change impacts on wind energy.

For the following sections, data from these selected GCMs was organized in a multi-model

ensemble (MME) strategy where, for each time period and RCP, data from the selected
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GCMs was concatenated into one multi-model ensemble. This multi-model ensemble
strategy is a way to minimize the individual model biases, since it is expected that the multi-
model ensemble mean (or median) shows lower uncertainties and better results than each
individual model (Pires et al., 2014). This fact is supported by several studies that compared
individual models and multi-model ensemble means with observed data (Ra' lisa! \nen and

Palmer, 2001; Pierce et al., 2009; Annan and Hargreaves, 2010).
2.3 - Impacts of climate change on future wind energy resource

MME data was used to evaluate climate change impacts on future wind energetic resource
over Europe. These impacts were quantified and assessed in three different categories: (i)
future changes in the wind speed and energy density medians; (ii) intra- and (iii) inter-annual

variability of the wind speed and energy density.
2.3.1 - Climate change impacts in future wind energetic resource

The main and most direct mechanism from which climate change can affect future wind
energetic resource is by altering the average wind speed (and consequently the available
wind energy density) of a given area. To assess possible changes in future wind speed and
wind energy density in Europe (and their respective geographical distributions) due to climate
changes, MME historical daily wind speed and energy density data was compared to future
daily wind speed and energy density data, for the two RCPs and three future time windows
considered. The wind energy density (also called wind power flux) is derived from equation 1,
where U is the wind speed and p is the air density (the standard value of 1.225 kg.m™ was

assumed).
Pruux =% p * U3 (1)

Changes in future wind energetic resource were evaluated by comparing, for each grid point,
the wind speed and energy density historical and future 20-year MME medians, for all RCPs

and time windows. The existence of statistically significant differences between the historical
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and future medians is evaluated by applying the Mann-Whitney (or Wilcoxon rank sum) non-
parametric test (Gibbons and Chakraborti, 2011), with a 5% significance level. The Mann-
Whitney test tests the null hypothesis of two data samples belonging to continuous

distributions with equal medians, against the alternative that they do not.

To further detail future changes in the wind energetic resource, the aforementioned
methodology was repeated but now in a seasonal perspective. For this purpose, all data and
analysis were divided into seasons: Winter, comprising the months of December, January
and February; Spring, with the months of March, April and May; Summer, corresponding the
months of June, July and August: and Autumn, between September and November.
Changes in future wind energetic resource were evaluated by comparing, for each grid point,
the wind speed and energy density historical and future MME medians of the four seasons,
for all RCP’s and time windows. The Mann-Whitney test for the difference of medians was

again used to assess the statistical significance of differences in the seasonal medians.

2.3.2 - Climate change impacts in future wind energy intra-annual variability

In order to analyze future changes in the wind energetic resource intra-annual variability,
annual median absolute deviations (MAD) were computed for the historical and future wind
speed and energy density MME data. MAD (Sachs, 1984) is a non-parametric measure of

the sample variability around its median, and is given by the following equation:

MAD = median [|X; — median(X)|]

MAD can be considered as a non-parametric equivalent of the standard deviation or
variance. It is a very robust scale estimator, with the best possible breakdown point (50%,
the double of the interquartile range) and its influence function has the sharpest bound

among all scale estimators (Rousseeuw and Croux, 1993).

Annual MAD data series were computed for each historical and future 20-year periods,

resulting in three-dimensional grids where the temporal dimension has 20 elements (20
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years). Each one of these temporal element is an annual MAD, the median absolute
deviation regarding that year. After, the median of these annual MADs was computed for
each grid point, in order to produce an estimate of the average intra-annual variability of each
20-year period (the historical and future 20-year periods). Differences between the historical
and future annual MAD medians were quantified and analyzed. For each grid point,
differences between historical and future wind speed and energy density annual MAD
medians can be seen as indicators of changes in wind speed and energy density intra-
annual variability. The statistical significance of these annual MAD median differences was

evaluated with the Mann-Whitney test, with a significance level of 5%.

2.3.3 - Climate change impacts in future wind speed and wind energy density inter-

annual variability

To assess hypothetical changes in future inter-annual variability, all daily wind speed and
energy density MME data was averaged to annual wind speed and energy density records.
Although wind speeds are not usually normally distributed, annual mean wind speeds can be
realistically characterized by a normal distribution (European Wind Energy Association,
2009). These annual mean wind speed and energy density data series were computed for
each historical and future 20-year periods, resulting in three-dimensional grids where the
temporal dimension has 20 elements (20 years). Each one of these temporal element is the
annual mean wind speed and energy density regarding that year. The standard deviation of
each one of these annual means data series will quantify their inter-annual variability. Thus,
differences between the standard deviations of two annual means data series will quantify

changes in the inter-annual variability.

For each grid point, the differences between historical and future standard deviations were
analyzed and the respective statistical significance of such differences computed. Statistical
significance of standard deviation differences was evaluated using the F-test with a
significance level of 5% assuming, as previously mentioned, that wind speed and energy

density annual means data series can be fitted to a normal distribution. The F-test asses the
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null hypothesis that the data in two samples comes from normal distributions with the same
variance, against the alternative hypothesis that they come from normal distributions with

different variances.

3 — Results and discussion

3.1 — Validation of CMIP5 models

The validation results of the 21 CMIP5 models are presented here. Figure 1 shows the
differences between ERA-Interim and each model historical wind speed medians, together
with the KS test output. For grid cells where the KS test shows statistically significant
differences, the grid cell is coloured in grey. For grid cells where the KS test does not show
statistically significant differences (this is, the model grid cell is in accordance with ERA-
Interim), the grid cell is coloured according to the ERA-Interim and CMIP5 model wind speed

median difference for that grid cell.
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Figure 1 — Wind speed median differences (CMIP5 model minus ERA-Interim) with a KS test (5% of significance level)

Figure 1 shows that, in general, none of the CMIP5 GCMs is able to satisfactorily represent
the wind speed distributions over Europe. In all models, the majority of the grid points show
different wind speed distributions from those from ERA-Interim. These results, although not
encouraging, are not wholly surprising and it was previously reported that GCMs are not
typically able to accurately reproduce contemporary wind climates or historical trends (Pryor
and Barthelmie, 2010). The typical GCMs coarse resolution does not allow an accurate
representation of near surface meteorological variables such as near surface winds, due to a
weak representation of the Earth's surface. Near surface winds depend strongly on the
surrounding terrain characteristics, mainly topography and land use (which determines the
surface roughness). Thus, a limited representation of the terrain characteristics will lead to
substantial errors in the representation of near surface atmospheric flows (Carvalho et al.,
2012a; 2013b; 2014a; 2014b; 2014c; 2014d; Alvarez et al., 2013). Chen et al. (2012)
investigated possible causes of the differences between nine CMIP5 GCMs near surface
wind fields and reanalysis output, by examining the differences between geopotential height
gradients from the GCMs and the reanalysis, reporting that the upper air pressure gradients
characteristics are considerably better captured by the GCMs than the near-surface wind
speeds. This finding supports the hypothesis that the GCMs topography and land use weak
representation may be one of the major error sources in the simulation of near-surface wind

speeds, not properly simulating the atmosphere-surface coupling and interaction. Not
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surprisingly, the CMIP5 GCMs grid points that are in accordance to ERA-Interim are mostly
located in ocean areas, where limitations in the representation of surface characteristics are
obviously attenuated. Mclnnes et al. (2011) also reported that a 19 CMIP3 AOGCMs
ensemble exhibit lower skills over land areas, by comparing this multi-model ensemble winds
with reanalysis winds for the period 1981-2000. The interaction between the surface and
adjacent atmosphere will ultimately result in medium- to small-scale atmospheric circulations.
Thus, this type of global models has their strength in representing large-scale meteorological
and climatic trends. Albeit reanalysis products, such as ERA-Interim, usually have similar
resolutions and suffer from the same terrain representation limitations, they incorporate and
assimilate significant amounts of observed meteorological data. Therefore, unlike pure GCM
output, reanalysis products may be able, at least to some extent, to depict medium-scale
wind circulations and this fact can explain the differences detected between CMIP5 GCMs

and ERA-Interim reanalysis.

Nevertheless, from Figure 1 four GCMs stand out with the highest number of grid points
similar to ERA-Interim in terms of wind speed distributions: HadGEM2-ES (180 valid grid
points), ACCESS 1.3 (177 valid grid points), ACCESS 1.0 (174 valid grid points) and
HadGEM2-CC (137 valid points). Also for these models, the differences between their wind
speed medians and ERA-Interim ones is relatively small. Oppositely, CanESM2 (with no
valid grid points), IPSL-CM5A-LR (5 valid grid points), MRI-CGCM3 and CNRM-CM5 (both
with only 8 valid grid points) are the models with worst performance. Therefore, the
HadGEM2-ES, HadGEM2-CC, ACCESS 1.0 and ACCESS 1.3 GCMs were chosen as the
models that best represent contemporary wind speed climatology and the ones that may
have the best performance in simulating future wind climate due to climate change. Thus,
data from these four models was used to build the MME dataset. The overall superiority of
HadGEM2-ES model (as well as its earlier CMIP3 version, the HadGEM2) was previously
reported in other studies such as Brands et al. (2013) and Brands et al. (2011). These
differences among the several CMIP5 GCMs performances in representing contemporary

wind climates should be seriously considered in dynamical downscaling applications focused
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on wind energy, given the typical equiprobable treatment of the driving models in these
dynamical downscaling studies (Brands et al., 2013). Only the models with the best
performances should be used as source of initial and boundary data in dynamical

downscaling applications, in order to minimize RCM (or RCMs ensemble) simulations errors.

Thus, the use of GCM models such as the ones here tested can be considered as somewhat
over-simplistic and insufficiently detailed to analyze these issues, due to their inherent
limitations and uncertainties. Adding to this fact, these results revealed the inability of the
CMIP5 global models here considered to realistically represent the past-present European
wind speed climatology. Nevertheless, it is expected that information from GCMs can
provide, at least, a preliminary picture of future changes in the large-scale European wind

speed climatology.

3.2 - Climate change impacts in future wind energetic resource

Climate change impacts on future wind energy resource and their respective geographical
distributions in Europe are analyzed in this section. To this end, MME wind speed and
energy density historical and future 20-year medians are compared and the statistical
significance of such differences assessed. Figures 2 and 3 show wind speed (left column)
and energy density (right column) median differences (future vs. historical) for RCP 8.5. Grey
colour represents areas with no median differences according to the Mann-Whitney test (5%
significance level). The first, second and third lines are for the short-term, medium-term and

long-term future, respectively.
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Figure 2 — Wind speed (left column) and energy density (right column) median differences (future minus historical) with Mann-
Whitney test - RCP 8.5. The grey colour represents areas without median differences according to a Mann-Whitney test (5%

significance level). The first, second and third lines are for the short-term, medium-term and long-term future, respectively.

According to Figure 2, if no GHG emissions mitigation strategies are employed (RCP 8.5),

there is a tendency for a cutback in future wind speed and energy density in Europe. The
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exceptions are some areas located in Central Europe (reaching up to Northern Europe),
Turkey, offshore areas adjacent to Madeira and Canary archipelagos and in the southern
and northern tips of the Iberian Peninsula, where the wind power resource can slightly
increase in the future. This reduction is clearly stronger in offshore areas than in onshore

ones.

These differences, together with increasing number of grid points statistically different from
the historical period, are clearly more marked for the medium and long-term future. For the
short-term future (2016-2035), the majority of the grid points do not show statistically
significant changes from the past-present period and, even when there are statistically
significant changes, they are relatively small in magnitude (typically lower than 5% for the
wind speed and than 10% for the energy density). For the medium-term future (2046-2065),
the number of grid points statistically different from the past-present winds increase together
with the magnitude of changes, although lower than 7-10% for the wind speed and 15-20%
for the energy density. By the end of the century (2081-2100), practically all the grid points
show statistically meaningful differences from the past-present period and the magnitude of
changes is clearly higher, reaching up to 10-15% in terms of wind speed and 30-40% for the
energy density. In this period, the areas that show a modest increase in the average wind
speed and energy density are fewer, and the decrease of the wind energetic potential is

more pronounced.

It should be noted that, since the energy density varies with the wind speed cubed, the
percentual differences shown in Figure 2 are similar for the wind speed and energy density
grids due to the colour scale chosen, where the energy density scale limits are about three
times higher than the wind speed ones. Next, Figure 3 shows the same analysis but

considering now the RCP 4.5 medium mitigation scenario.
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Figure 3 — Wind speed (left column) and energy density (right column) median differences (future minus historical) with Mann-
Whitney test - RCP 4.5. The grey colour represents areas without median differences according to a Mann-Whitney test (5%

significance level). The first, second and third lines are for the short-term, medium-term and long-term future, respectively.

The future outlook and geographical variation of the wind energy resource under this

scenario, which considers GHG emissions mitigation actions, is similar to the one described
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by the RCP 8.5 scenario (Figure 2). However, under this scenario the differences between
past-present and future wind energetic resource are considerably lower (both in terms of
increase/decrease of the wind energetic resource) than the ones witnessed under the RCP
8.5, particularly for end of the century. To further analyze and detail the future tendencies of
wind energetic resource over Europe, Figures 4 and 5 show the same analysis of Figures 2

and 3 for the wind energy density, but now divided by seasons.
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Figure 4 — Seasonal RCP 8.5 wind energy density median differences (future minus historical) with Mann-Whitney test. The
grey colour represents areas without median differences according to a Mann-Whitney test (5% significance level). The first,
second, third and fourth lines are for Autumn, Winter, Spring and Summer periods, respectively.

According to Figure 4 there is some seasonality in the changes of the wind energy density.
Although in almost all seasons there is a general tendency for the future wind energy density
to be lower than in the contemporary period (specially in Autumn and Spring for the medium
and long term future), in Summer periods almost all Europe (with the exception of the
Scandinavian Peninsula and Eastern Europe) can see its wind energetic resource increase.

All of these tendencies show increasing magnitudes with time.

In Autumn, practically all Europe shows a generalized tendency for a cutback in the wind
power resource, with a strong decrease of the wind energy densities in the Mediterranean
area. The exceptions are seen in some areas located in Northern and Central Europe (short
and medium-term futures), in Turkey (medium and long-term futures) and in the offshore
areas adjacent to the Canary and Madeira archipelagos. Winter periods show similar trends
and patterns to the Autumn ones, but here the exceptions for the reduction of the wind
energy densities are more localized in Central Europe and in offshore areas around the
Madeira and Canary archipelagos (with the exception of the long term future projections). In
Spring periods, although the near-term future projections show a generalized increase in the
wind energy density across Europe (with the exception of Northern areas), the medium and
long-term future projections show opposite tendency. For these periods, practically all
European territory shows a decrease in the wind energy density, the only exceptions being
the southernmost tip of the Iberian Peninsula and the offshore areas adjacent to the Madeira
and Canary archipelagos. In Summer, while the Scandinavian Peninsula and eastern areas
of Europe show lower future wind energy densities, central and southern Europe shows a
strong increase of the wind energetic resource. This is particularly visible for the long-term

future.

Figure 5 shows the same information as Figure 4 but now for the RCP 4.5.
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Figure 5 — Seasonal RCP 4.5 wind energy density median differences (future minus historical) with Mann-Whitney test. The
grey colour represents areas without median differences according to a Mann-Whitney test (5% significance level). The first,
second, third and fourth lines are for Autumn, Winter, Spring and Summer periods, respectively.

Figure 5 shows that in, similarly to what was seen in Figures 2 and 3, the major difference
between RCP 8.5 and RCP 4.5 is that the latter shows lower differences between
contemporary and future wind energy resource. This is also true when this analysis is divided

into seasons. Nevertheless, these seasonal differences between contemporary and future
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wind energy density are still present, albeit somewhat smoothed under this mid-range GHG

emission scenario.

From Figures 2 and 3, a general tendency for a decrease of future wind speeds and energy
densities over Europe becomes noticeable. Although some areas show an opposite
tendency (some areas located in Central Europe reaching up to Northern Europe, Turkey
and the southern and northern tips of the Iberian Peninsula), with a modest increase in future
wind energetic resource, the negative trends are clearly dominant both in magnitude and
geographical distribution. These tendencies magnify in time, since the variations of the wind
energetic resource are lower for the near-term future and higher in the end of the current
century. Furthermore, it is clear that these changes and tendencies are higher under
scenarios of stronger radiative forcing. When analyzing the future variation of the wind
energetic resource in a seasonal perspective (Figures 4 and 5), it is detectable a seasonality
in the variation of the wind energy density. While in Autumn and Spring there is a tendency
for the future wind energy density to be lower than in the contemporary period (with some
localized exceptions in Central/Northern Europe), in Summer almost all Europe (with the
exception of the Scandinavian Peninsula and Eastern Europe) shows an opposite tendency,
with an increase in its wind energetic resource. All of these tendencies show increasing

magnitudes with time and under stronger emission scenarios.

Although it is not straightforward to find a direct and objective cause for these tendencies due
to the non-linear dependence of near-surface winds with a wide range of meteorological and
terrain features, some studies that investigated CMIP5 data reported findings that can be
related to this issue: decreasing trends in cyclone number and frequency in most of the North
Atlantic and Europe (Eichler et al., 2013; Zappa et al., 2013); decrease of extreme cyclones
events and in storm track activity in the Northern Hemisphere (Chang et al., 2012); and an
increased frequency of the negative phase of the North-Atlantic Oscillation (NAO) under
future warming (Cattiaux et al., 2013). A negative phase of the NAO is related to a

weakening of its two pressure centres (Azores high and Iceland low), leading to lower zonal
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winds (mainly westerlies), together with fewer and weaker cyclones (Pryor et al., 2005a).
Thus, a future decrease in the storm activity, number and intensity of cyclones in Europe and
a tendency for the NAO to be more negative can explain the tendency for future lower wind

speeds across Europe.

It becomes pertinent to discuss the obvious differences between the future tendencies of
wind speeds over Europe projected by CMIPS and its predecessor, CMIP3. The latter
projected that by the end of the current century the wind energy density and annual mean
wind speeds can increase in northern Europe and decrease in the south of the continent,
especially in Winter (Pryor et al., 2005a; Bloom et al., 2008; Walter et al., 2006). Several
authors (Pryor and Barthelmie, 2010, and references therein) reported that such findings are
consistent with a tendency present in CMIP3 future climate projections toward a positive
phase of the NAO (Rauthe et al., 2004), a poleward displacement of the storm track (Pryor
and Barthelmie, 2003) and an increase of midlatitude cyclones intensity over the North
Atlantic, particularly in Winter (Nolan et al., 2011). Ergo, it becomes clear that CMIP5 and
CMIP3 modelling results show different trends and future wind climatology projections over
Europe and its driving mechanisms. This fact is not surprising given the aforementioned
differences in the GCMs used in CMIP3 and CMIP5. One of the differences between these
two generations of GCMs that can have a strong impact in realistically simulating future near-
surface winds is that CMIP5 GCMs are able to incorporate land use and land cover changes
that are frequent over time (Moss et al., 2010). CMIP3 GCMs may not realistically update
these changes over their simulations in their boundary conditions, as reported by Vautard et
al. (2010). Aside differences in the GCMs design, Cattiaux and Cassou (2013) studied the
differences between CMIP5 and CMIP3 trends in the wintertime Northern Annular Mode
(NAM, also known as the Arctic Oscillation). The NAM directly influence European climate
through changes in its regional feature, the NAO (Ambaum et al., 2001). Cattiaux and
Cassou (2013) reported that CMIP3 future projections showed a positive NAM trend, while
CMIPS5 revealed an opposite (negative) trend, and these differences are mostly related to the

CMIPS faster sea ice depletion in early winter and stronger warming in the western tropical
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Pacific in late winter, which will remotely influence the NAM through teleconnection

mechanisms. Also, Cattiaux et al. (2013) found that CMIP5 models, oppositely to CMIP3

ones, project a stronger winter North-Atlantic jet stream than observed, suggesting an

increased frequency of the NAO negative phase under future warming. Furthermore, Chang

et al. (2012) reported that CMIP5 models project a larger decrease in the Northern

Hemisphere (NH) storm track activity than CMIP3 models. Thus, it appears that CMIP5 and

CMIPS3 projected opposite trends in future NAO phases, and CMIP5 models foresee a larger

decrease in NH storm activity when compared to CMIP3 results. These findings can be

related to CMIP5 and CMIP3 different projections of future near-surface winds over Europe.

3.3 - Climate change impacts in future wind energy intra-annual variability

To assess climate change impacts on future wind energetic resource intra-annual variability,

historical and future MME wind speed and energy density annual MAD medians are

compared and the statistical significance of such differences assessed. These results are

presented in Figures 6 and 7.
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Figure 6 — Wind speed (left column) and energy density (right column) MAD median differences (future minus historical) with
Mann-Whitney test - RCP 8.5. The grey colour represents areas without median differences according to a Mann-Whitney test
(5% significance level). The first, second and third lines are for the short-term, medium-term and long-term future, respectively.

According to Figure 6, in the short-term future (2016-2035) no significant changes in the wind

speed and energy density intra-annual variability are to be expected, since only a small

number of grid points show statistically significant MAD median differences between the
contemporary and short-term future. Although the differences are more significant for the
wind energy density than for the wind speed, in European mainland almost all grid points
show statistically negligible differences. However, for the medium and long-term future the
panorama is considerably different. For these periods, the wind speed and energy density
intra-annual variability are expected to be significantly lower, especially in the end of the
current century. In the medium-term future (2046-2065), the wind speed and energy density

intra-annual variability trends are somewhat homogeneous in Europe, decreasing around 2-
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633  10% in terms of wind speed, corresponding to about 10-30% in terms of wind energy density.
634  This tendency is present practically in all European territory, with the exceptions of some

635 localized areas in the Iberian and Scandinavian Peninsula, Turkey and in central Europe.
636  The long-term future shows similar geographical patterns and signal for the wind speed and
637  energy density intra-annual variability changes, but with intensified magnitudes: the wind

638  speed intra-annual variability can decrease up to 8-15%, while the wind energy density intra-
639  annual variability can be reduced in about 15-40%. This negative trend of the wind speed
640 and energy density intra-annual variability is more pronounced in the Mediterranean area,
641  whereas some areas located in Turkey and Central Europe can see the intra-annual

642  variability increase. Figure 7 shows the same information but now considering RCP 4.5 data.
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Figure 7 — Wind speed (left column) and energy density (right column) MAD median differences (future minus historical) with
Mann-Whitney test - RCP 4.5. The grey colour represents areas without median differences according to a Mann-Whitney test
(5% significance level). The first, second and third lines are for the short-term, medium-term and long-term future, respectively.

The expected changes in the wind speed and energy density intra-annual variability
considering RCP 4.5 data are very similar to the ones expected with RCP 8.5, although with
lower magnitudes. Similarly to what was seen for RCP 8.5, RCP 4.5 foresees a generalized
decrease in the wind speed and energy density intra-annual variability all over European
territory, more marked in the medium and long-term futures. The exceptions are again seen

in Turkey and in some localized areas in Central/Northern Europe.

Bearing in mind that, typically, average wind speeds tend to be higher in cold seasons and
lower in warmer ones, the results presented in the previous section (Figures 4 and 5) are
consistent with the general decrease in the wind speed and energy density intra-annual
variability here detected: if in Winter the wind speed and energy density tend to be lower and
in Summer they tend to be higher, the difference between Winter-Summer wind energetic
resource will be lower and, hence, lower will its intra-annual variability be (the typical
variation the wind speed and energy density within a year). This reduction of the wind energy
density intra-annual variability, particularly if it reaches 30-40% of its current value, is of great
interest for the electrical grid operators, since the offer-demand grid balance can be easier to

maintain with a less variable wind-derived electricity injection.
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665 3.4 — Climate change impacts in future wind speed and wind energy density

666 inter-annual variability

667 In order to assess climate change impacts in future wind speed and wind energy density
668 inter-annual variability (this is, the variability between different years), differences in the
669  standard deviation between historical and future wind speed and energy density annual

670 means data series are computed and their statistical significance assessed with the F-test.
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675 Figure 8 — Wind speed (left column) and energy density (right column) standard deviation differences (future minus historical)

676 with the F-test - RCP 8.5. The grey colour represents areas without median differences according to a F-test (5% significance
677  level). The first, second and third lines are for the short-term, medium-term and long-term future, respectively.

678  According to Figure 8, no significant changes are to be expected in the inter-annual

679  variability for the wind speed and energy density over Europe until the end of the current

680  century. For all future periods, the great majority of the grid points show statistically not

681  significant differences when compared to the contemporary period inter-annual variability.
682  Although when such differences are statistically significant they are high in magnitude

683  (reaching up to an increase of 100% a decrease of 60-70%), these statistically significant

684  grid points are scattered and no conclusive trend, geographical or temporal, is detectable.
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685  Figure 9 shows the same analysis but now considering RCP 4.5 data.
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with the F-test - RCP 4.5. The grey colour represents areas without median differences according to a F-test (5% significance
level). The first, second and third lines are for the shori-term, medium-term and long-term future, respectively.

Figure 9 shows similar geographical and temporal changes of the wind speed and energy
density inter-annual variability of Figure 8. Thus, also when considering future climate
projections of RCP 4.5 scenario no significant changes are to be expected in the inter-annual
variability for the wind speed and energy density. Considering the information presented in
Figures 8 and 9, it is advisable to adopt a conservative point of view in this issue and
consider that no significant changes are to be expected in the inter-annual variability for the

wind speed and energy density over Europe until the end of the current century.
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4 — Conclusions

This work aimed to provide a large-scale picture of future changes in European wind
resource due to climate changes, using the latest IPCC future climate projections derived
from the CMIP5 project. This work comprised two stages: first, to assess the GCMs that best
reproduce contemporary near surface wind speeds over Europe. Secondly, data from the
best GCMs was used to quantify and assess future changes in the large-scale wind
energetic resource and their geographical distributions over Europe, together with its intra-

and inter-annual variability. The main conclusions of this work can be summarized as follows:

» The CMIP5 GCMs HadGEM2-ES, HadGEM2-CC, ACCESS 1.3 and ACCESS 1.0
are the models that showed the best ability to represent the European contemporary
near surface wind speed climatology over Europe described by the ERA-Interim
reanalysis. Near surface wind speed data from these models was used to assess
future projections of wind speed climatology over Europe. However, it should be
highlighted that all tested CMIP5 GCMs showed poor results in accurately
representing past-present European wind climatology. Additional efforts should be

employed to improve the performance of these models.

» The future European wind energetic resource is predicted to be lower than the one
available at present, due to a decreasing tendency of the large-scale wind speeds
over the current century. Although some areas (located in Central Europe reaching
up to Northern Europe, Turkey and the southern and northern tips of the Iberian
Peninsula) can show a modest increase in future wind energy resource, negative
trends are clearly dominant both in magnitude and geographical distribution. These
tendencies increase in time, since the variations of the wind energy resource are
lower for the upcoming decades and higher by the end of the current century. They
are also higher under scenarios of stronger radiative forcing. Although in the

upcoming decades (2016-2035) no alarming changes in the wind energetic resource
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are to be expected (lower than 10% for the “business as usual” scenario and below
5% for the midrange GHG emission mitigation RCP), the panorama drastically
changes for the last decades of the current century (2081-2100), where the reduction
in the wind energetic resource over Europe can reach an alarming 30-40% (when

considering RCP 8.5).

Seasonality is also patent in the variation and changes in the future wind energy
resource. While in Autumn and Spring there is a tendency for the future wind
energetic resource to be lower than in the contemporary period (with some localized
exceptions in Central/Northern Europe), in Summer almost all Europe shows an
opposite tendency (with the exception of the Scandinavian Peninsula and Eastern
Europe), with an increase in its wind energetic resource. Again, these tendencies
magnify in time and they are higher under scenarios of stronger radiative forcing that

consider less GHG emission mitigation actions.

No significant changes in the wind speed and energy density intra-annual variability
are to be expected in the period 2016-2035. However, for the medium (2046-2065)
and long-term (2081-2100) future the panorama is considerably different. For these
periods, the wind speed and energy density intra-annual variability are expected to
be significantly lower (except in Turkey and in some localized areas in
Central/Northern Europe), especially in the end of the current century (around 15-

40%). These tendencies are also higher under scenarios of stronger radiative forcing.

In terms of inter-annual variability, no significant changes are to be expected over
Europe during the current century. The statistical analysis revealed that the
differences between past-present and future inter-annual variability, although
sometimes high in magnitude, are not statistically significant. Thus, no conclusive

trends, geographical or temporal, are detectable.
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Although the validation results of this study showed the inability of the CMIP5 global models
to realistically represent the past-present European wind speed climatology, and the use of
such coarse models can be considered as somewhat over-simplistic and insufficiently
detailed for the desired purposes, the findings of this work can serve as an important
background for future downscaling initiatives of CMIP5 data to regional and local scales and
should be seen as a preliminary warning that a continuous increase of greenhouse gases
emissions can jeopardize our ability to mitigate such emissions, at least in what concerns the
role and contribution of wind energy. By negatively affecting future wind energy resource,
climatic changes can weaken wind power active and vital contribute to reduce greenhouse
gases emissions. However, it needs to be strongly emphasised that there is significant
uncertainty associated to global models future climate projections that, together with the poor
ability of the CMIP5 global models to accurately represent the past-present wind climate over
Europe due to their intrinsic limitations, provides limited confidence to the future outlook of
the European wind energy resource projected by these models. Thus, the information
provided by these models should be seen as a preliminary picture of the large scale future
tendencies of the wind energy resource, and further research focused on these themes
should be performed by downscaling CMIP5 GCMs output to regional and local scales in
order to better represent the topography and land use and thus better simulate near surface

winds.
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Chapter 7 — Main conclusions

In this chapter the main findings of all the research presented in this thesis are presented in
an integrated approach. Thus, the main conclusions to be drawn from the previous chapters

can be summarized as follows:

» The choice of the initial and boundary data used to force the WRF model is of
paramount importance to obtain accurate modelled winds and wind energy
production estimates. ERA-Interim reanalysis is the initial and boundary dataset
that provides the most accurate forcing data to drive the WRF model wind
simulation and wind energy production estimates, both for Portuguese onshore and
adjacent Spanish offshore areas. Among other features, the fact that ERA-Interim
reanalysis makes use of a four-dimensional variational analysis method to
assimilate observed data, oppositely to the three variational data assimilation
methods used by the other reanalyses, proved to be determinant in obtaining
accurate modelling results. The NCEP-FNL and NCEP-GFS analyses can be seen
as the best alternatives to ERA-Interim, particularly for cases where reliable NWP

forcing data is needed for real-time applications due to their fast availability.

» The accuracy of the simulated winds and wind energy production estimates is also
very dependent on the choice of the planetary boundary layer parameterization
schemes. The parameterizations set composed by the ACM2-PX PBL and SL
schemes was proven to be the best choice in terms of planetary boundary layer
parameterization schemes for the wind simulation and wind energy production
estimates for mainland Portugal and adjacent Spanish offshore areas, for a complete
year simulation period. The fact that the ACM2 PBL scheme combines features of
local and non-local closure schemes and also the fact that the PX LSM scheme
provides a better parameterization of the surface meteorology proved to be
important in the model near-surface wind simulation performance for a period that

includes the different synoptic/atmospheric stability conditions that typically occur
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in a annual cycle. However, if considering shorter simulation periods (days, weeks,
months), it is necessary to assess the performance of the several PBL-SL
parameterization schemes due to their close dependence with the local atmospheric

stability/stratification conditions and synoptic situation.

The optimisation of the WRF model here presented allowed a significant decrease
of the model errors in simulating wind and wind energy production estimates for
the area under study. Although NWP models can already be successfully seen as
reliable alternatives to in situ measured winds for wind energy resource spatial
mapping and preliminary production estimates, particularly if using its optimal
configuration, the same cannot be said for wind farm projects in a more advanced
stage (that require highly accurate wind data) due to errors that NWP models still
show when compared with in situ wind measurements. The main caveats of the
WRF model performance in near surface wind simulation detected in this work
were: a systematic tendency to overestimate offshore wind speeds; worse
performance in simulating atmospheric flows over complex terrain and areas
located close to the coast due to limitations in representing the terrain
characteristics; in simulating low (below 4 m.s™) and high (above 12 m.s™) wind
speeds, showing better performance in simulating intermediate winds; a systematic
overestimation of low wind speeds and underestimation of high wind speeds,
revealing a tendency to remain close to the mean wind speed state. Despite these
limitations, NWP models (particularly the WRF model) are being continuously
improved and new configuration options being added to their already wide panoply
of available choices, which are expected to improve their performances. Therefore,
it is vital to continuously test and optimise NWP models in order to attain their
fullest capacities and accuracy, aiming to minimize the errors and shorten the path
to NWP models being able to substitute in situ measurements for accurate wind

energy production estimates.

Notwithstanding, and specifically for offshore areas, the optimal WRF
configuration obtained in this work allowed a simulation of offshore winds and
wind energy production estimates closer to measured values than offshore wind

measurements collected by satellites (QuikSCAT, CCMP and NWP/QuikSCAT

141



blended datasets) for the offshore areas under study. This outcome is of particular
relevance given that, according to the literature published until the present moment,
never a NWP was able to surpass the accuracy of these satellite offshore wind
observations, which are often used to assess offshore wind energy production
potential. Moreover, NWP models have additional advantages such as offering
higher spatial/temporal resolutions and full data availability when compared to
satellite-derived offshore wind data, and are able to offer wind data for any
geographical area and temporal period. However, the offshore areas under study are
coastal and it is know that satellites have their strength in open ocean areas,
showing strong limitations in collecting measurements over areas near the coast
due to their limited resolution. Thus, it is expected that satellites can show better
performances in measuring open ocean offshore winds. Nevertheless, considering
that currently typical offshore wind farms are located in coastal areas and that
satellites are unable to accurately depict winds over such areas, together with the
fact that the NWP modelling results showed better performance than satellite
measurements in these coastal areas over the Iberian Peninsula, an optimised NWP
model may be the best alternative to in situ offshore wind measurements in coastal
areas. Yet, new generations of satellites that measure offshore winds are
continuously being developed and deployed in orbit. Thus, it becomes vital to
conduct a parallel effort that, one the one hand, continuously performs NWP
optimisation studies in order to attain their fullest capacities and accuracy and, on
the other hand, continuously compares optimised NWP modelled winds to the latest
satellite-derived offshore wind data to choose the best alternative to in situ offshore

wind measurements.

According to the IPCC latest future climate projections under anthropogenic-
induced climate changes, the future panorama for the large-scale wind energy
resource over Europe does not seem promising. The future European wind energy
production potential tends to be lower than the one presently available, due to a
decreasing tendency of the large-scale wind speeds over the current century,
especially by the end of the current century and under scenarios of stronger
radiative forcing. Some exceptions to this decreasing tendency of future wind

speeds are detected in Central/Northern Europe, Turkey and in the Iberian
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Peninsula. In these areas, the wind energy resource can slightly increase in future
times, especially by the end of the current century and under scenarios of stronger
radiative forcing. In terms of the wind energy resource intra-annual variability, it
tends to be lower in the future due to wind speeds decrease in cold seasons and
increase in warmer seasons, particularly in the end of the current century and under
scenarios of stronger radiative forcing. Oppositely, no significant changes in the
inter-annual variability are expected over Europe during the current century. These
findings should be seen as a preliminary warning that a continuous increase of
greenhouse gases emissions can jeopardize our ability to mitigate such emissions,
at least in what is related to the role and contribution of wind energy. By negatively
affecting future wind energetic resource, climatic changes can weaken wind power
active and vital contribute to reduce greenhouse gases emissions. Therefore, the
climate change itself can inherently diminish our ability to fight it, in a kind of
“snow ball” effect, at least in what is related to the wind energy role in of
greenhouse gases emissions mitigation. However, it needs to be highlighted and
seriously borne in mind the significant uncertainty associated to global models
future climate projections that, together with the limited ability of the IPCC CMIP5
global models to accurately represent the past-present wind climate over Europe
due to their intrinsic limitations, provides limited confidence to the future panorama
of the European wind energy resource projected by these models. Thus, the
information provided by these models should be seen primarily as a preliminary
picture of the large scale future tendencies of the wind energy resource and further
research focused on these themes should be performed by downscaling CMIP5
GCMs output to regional and local scales, in order to better represent the

topography and land use and thus better simulate near surface winds.
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Chapter 8 — Future work

Although the work presented in this thesis encompassed several different approaches to
optimise the WRF model, aiming to improve its wind simulations and wind energy
estimates, and focused on the anthropogenic-induced climate changes impacts on future
wind energy resource over Europe, it also revealed that these are continuous efforts with a
lot of work left to be done. This chapter aims to shed some light in “where do we go from
here” in the issues focused in this work: what can be done to further optimise the WRF
model, improving its wind simulations and wind energy production estimates, namely in
what is related to its initial/boundary conditions and configuration options? Even if these
improvements are achieved, will NWP offshore wind modelling be able to keep up with
the developments and progress in satellite offshore wind measurements, providing more
accurate offshore wind data than satellites? As for the future panorama of wind energy

resource, what can be done to add certainty and detail to future climate projections?

As aforementioned, the WRF model is being continuously improved and new
configuration options being added to its already wide panoply of available choices in each
new release of this model. In order to continue to use its optimal configuration and thus
obtain the best wind modelling results, it is necessary to continuously test its latest
configuration options assessing if they can improve the wind modelling accuracy. In what
is more directly related to near-surface wind modelling, it is necessary to test the new PBL
parameterization schemes added to the latest WRF model versions released. Besides PBL
parameterization schemes, the latest WRF versions include new options that are expected
to refine the WRF performance in near-surface wind modelling. For onshore sites, an
updated version of the topographic correction of surface winds to represent extra drag from
sub-grid topography and enhanced atmospheric flow at hill tops (option topo_wind,
described in Jimenez and Dudhia, 2012) appears as a promising tool to minimize the WRF
model near-surface wind errors caused by its limitations in accurately representing the
terrain topography and land use/roughness. As reported in this work, one of the main

limitations and sources of error of WRFs onshore wind modelling performance is its
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limited ability to resolve the local topography and terrain roughness, which will strongly
impact the simulation of near-surface winds, particularly in sites located in complex
terrain. Thus, it becomes clear the need to test this new option for onshore areas,
particularly for sites located in complex terrain. For offshore sites, the new 3D ocean
model added to WRF (detailed in Price et al., 1994) seems able to offer improvements in
near-surface ocean wind modelling. This model predicts horizontal advection, pressure
gradient force, as well as mixed layer processes. From the work presented in this thesis it
was seen that the WRF model tends to overestimate near-surface ocean winds, most likely
due (but not only) to the fact the WRF model does not include an ocean model, thus
considering the ocean as a constant flat surface while the real ocean has higher and
variable roughness lengths as a consequence of variations in the ocean surface height
(tides, swells, etc.). Therefore, the lower roughness lengths simulated by the model over
the ocean will originate higher winds, due to the lower friction between atmosphere and
ocean surface. Therefore, this new 3D ocean model may be able to offer significant

improvements in the simulation of near-surface ocean winds.

As for further improve the initial and boundary data to drive NWP wind modelling, given
that in this work practically all reanalyses and analyses currently available were tested, the
next step will be to assimilate wind measurements directly to the initial and boundary
fields. Given that wind measurements collected in wind farm measuring campaigns and in
offshore buoys moored offshore the Iberian Peninsula are not assimilated in any of the
reanalyses and analyses datasets currently available, it is expected that the assimilation of
this wind data on the NWP model initial and boundary fields can bring significant
improvements to wind modelling results. For this, the WRF model Data Assimilation
System (both the 3D-Var, 4D-Var and the observational nudging) can be used to assimilate
wind measurements onto the WRF model initial and boundary fields and further improve
the wind modelling results. To further improve the wind modelling results the NWP spatial
resolution can also be increased, depending on the available computational resources.
Having the NWP model optimized, further improvements in the wind modelling results can
be achieved by using Model Output Statistics and Neural Networks in the post-processing
of the NWP output. Furthermore, the NWP output can be downscaled from the meso- to

the micro-scale by using CFD (Computational Fluid Dynamics) models. CFD models are
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capable of modelling wind flows at very fine spatial resolutions (50-10 m), and also able to
represent the terrain topography and land-use at these fine resolutions. Thus, the use of
CFD models to downscale mesoscale output from NWP models is expected to bring
significant improvements in the wind modelling performance, as it has been witnessed in

the recent past.

In parallel with these efforts to further optimise the WRF model wind modelling, it also
necessary to focus on the new generation of satellites that remotely measure offshore near-
surface winds (for example, the ASCAT, OSCAT and RAPIDSCAT scaterometters).
Besides the pertinent issue of comparing these new offshore wind datasets with the best
WREF offshore wind simulations, aiming to assess what is the best alternative to directly in
situ measured offshore wind data, if any of these satellite-derived offshore wind data
shows higher accuracy than the optimised WRF offshore wind simulations when compared
to in situ measurements, it will also be pertinent to assimilate this remotely sensed data into
WRFs initial and boundary fields, which can be of particular importance when no in situ

offshore wind data is available for assimilation.

As for the future panorama of wind energy resource under climate change scenarios, the
obvious next step is to analyse the EURO-CORDEX downscaling project data. This
project, in which are involved the main European research institutes connected to
climatology and climate changes, downscales the CMIP5 GCM data to Europe making use
of several RCMs. Due to the aforementioned GCMs limitations in accurately representing
the terrain characteristics (topography and land use/roughness) caused by its limited spatial
resolution and, consequently, also the near-surface atmospheric circulations that are
strongly influenced by these factors, it is expected that the downscaling of GCM data with
RCMs can bring significant improvements in terms of detail, confidence and reliability of
the future climate projections. Another approach that can be followed is to use the

optimised WRF configuration to downscale CMIP5 GCM data to regional and local scales.
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