Regionalization of Europe based on K-Mean Clustering Analysis of the climate change of Temperatures and Precipitation

M. J. Carvalho, P. M. Melo-Gonçalves, J. Teixeira and A. Rocha

CESAM – Centro de Estudos do Ambiente e do Mar
Physics Department University of Aveiro
Correspond to: mariajcarvalho@ua.pt
The problems of Regionalization

- **Geographic** → coherence between grid points not guaranteed;

- **Reference Period** → may be different in projected future;

Solution?

Using the differences between projected future and the reference period.
Objective

Definition of regions of coherent climate change patterns in Europe

How?
Methodology

1) Determination of the daily climatology for each grid point (for each of the variables under study);

3) Difference between reference period and long-term future climatologies;

2) Number of clusters - k? (Mathematical determination + sensitivity to k)

4) K-means cluster analysis → Each grid point is assigned to 1 cluster.
 - Univariate
 - Multivariate

(Sensitivity to the number of clusters)
Daily data from **MPI-ESM-LR r1i1p1** (CMIP5 project) simulations with 1.9° horizontal resolution for:

- **Recent-past**: 1986 - 2005
- **RCP8.5 Long-term future**: 2081 – 2100

Variables:
- tasmax
- tasmin
- pr
Why K-means?

- Non-hierarchical method;
 (vectors can be reassigned)
- Minimizes the variance between cluster members, maximizing variance between clusters

Determination of k in K-means:

- Gap Statistic → $k = 6$
- $k = 3$
- $k = 10$
- $k = 13$

Evaluation of the validity of the mathematically determined k.
Results

K = 3

pr

tasmin

tasmax

3-var
Results

pr

K = 6

tasmin

tasmax

3-var
Results

\[K = 10 \]

\[pr \quad tasmin \]

\[tasmax \quad 3\text{-var} \]
Results

K = 13

pr

tasmin

tasmax

3-var
Validation of the k regions

tasmax

tasmin

pr

Mean Climatology difference for all of each of the 6 region's grid points
Concluding Remarks

- Mathematical approach is, on a first look an effective way of determining k;
 - $k = 3 \rightarrow$ large variability within the clusters
 - $K = 6 \rightarrow$ optimal (for the used resolution)
 - $k = 10/13 \rightarrow$ new clusters are sometimes “cell-thin” and consequently not significant

(...)
Concluding Remarks

(...)

- Univariate K-means results vary for each variable, which was expectable specially for pr;
- Multivariate K-means analysis is consistent with the univariate versions;
- Daily climatology differences for each cluster are mostly outside the minimum-maximum range in-cluster differences.
Further work ...

- Sensitivity of k to horizontal resolution;
- Using defined regions for the climate change study in the regime of extreme events;
- Using other significant atmospheric variables such as wind intensity and direction as well as mean sea level pressure;
- Using an ensemble of the CMIP5 models instead of a single model approach.
Thank you for your time!

This study was supported by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by Portuguese national funds through FCT – Fundação para a Ciência e a Tecnologia, within the framework of Projects:

RESORT Project Reference PTDC/CTE-ATM/111508/2009;
CLIPE Project Reference PTDC/ AAC-CLI/111733/2009;