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Abstract8

A high resolution atmospheric modelling study was done for a 20-year recent historical period.9

The dynamic downscaling approach adopted used the Max Planck Institute Earth System Model10

(MPI-ESM) to drive the WRF running in climate mode. Three online nested domains were used11

covering part of the North Atlantic and Europe, with a resolution 81 km, and reaching 9 km in12

the innermost domain which covers the Iberian Peninsula.13

For validation purposes, an additional configuration forced by the ERA-Interim reanalysis was14

also run. Validation was based on comparison of probability distributions between model results15

and observational datasets of near surface temperature and precipitation. The comparison was16

based on daily climatologies, spatially averaged inside subdomains obtained with cluster analysis17

of the observations, for each of the four seasons. The validation of the historic simulation was18

done in order to assess if the climate mode can be used to drive the regional WRF configuration,19

to estimate climate change projections for future time periods.20

Considering the difficulty to simulate extremes in long term simulations, the results showed21

a confortable comparison of both models (forced by climate model and reanalysis results) with22

observations. This provides us confidence on the continuity of using MPI-ESM to perform climate23

simulations of the future.24
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1. Introduction27

Global Climate Models (GCM) have been in use for more than a decade to study the impact28

of anthropogenic emission scenarios on global climate change. These models, albeit useful to un-29

derstand global trends and climate change behaviour, lack the spatial resolution to solve meso to30

local scale phenomena. Therefore, in order to assess the impact of climate change at local scales in31

activities of interest such as agriculture, forestry and energy production, regional climate change32

modelling is needed. Various techniques have been developed to downscale GCM scenarios (Hewit-33

son and Crane, 1996; Lo et al., 2008; Racherla et al., 2012). A review of the different downscaling34

methods can be found in Wilby and Wigley (1997) and Giorgi et al. (2004), as well in the Inter-35

governmental Panel on Climate Change (IPCC) Third (Giorgi et al., 2001; Mearns et al., 2001)36

and Fourth (Christensen et al., 2007) Assessment Reports. The dynamical downscaling approach37

relies on coarse-resolution large-scale fields from either GCMs or global reanalysis, which are used38

to provide the initial and boundary conditions to a nested Regional Climate Model (RCM). The39

pioneer European project PRUDENCE followed by ENSEMBLES (Van der Linden and Mitchell,40

2009) provided multi-model ensembles of RCM simulations for Europe which has been extensively41

analysed not only by the official modelling groups but also by the word scientific community. When42

constrained by a large-scale model, the RCM does not change the large-scale circulation of the43

GCM, while adding regional detail in response to the large scale forcing, simulating more realis-44

tically surface winds and temperatures over complex terrain and coastlines, as well as mesoscale45

processes and its variability (Giorgi, 2006; Lo et al., 2008). The result is typically a highly detailed46

and accurate model solution over the region of interest.47

Such implementations have been broadly used and the value added with the downscaling tech-48

nique has been often debated. Castro et al. (2005) and Rockel et al. (2008) have shown that the49

RCM can not add skill to simulations of large-scale weather features beyond what is already in50

the parent global model or reanalysis, since the RCM is strongly influenced by the parent model.51

Moreover, Castro et al. (2005) classified the dynamical downscaling into (1) numerical weather52

prediction, in which the memory of the initial conditions are not lost due to the short-term model53

integration; (2) regional climate simulations driven by global reanalysis, in which memory is lost,54

2



but the periodically enforced lateral boundary conditions contain atmospheric observations; (3)55

GCMs, in which the real-world influence comes indirectly via the observed ocean boundary condi-56

tions driving the GCM; and (4) GCMs real-world constraints are completely absent. Considering57

this, the authors observed that model skill worsens as the parent global input goes from a re-58

analysis to a global prediction model (in which all aspects of the climate system are predicted),59

with intermediate steps where only some aspects of the system are prescribed (e.g., sea surface60

temperature).61

In the past decade, the most common approach in regional climate simulations was to have a62

single initialization of large-scale fields and frequent updates of lateral boundary conditions. This63

approach has been shown to have several drawbacks, namely the development of flow within the64

RCM domain inconsistent with the driving boundary conditions. Furthermore, the internal solu-65

tion generated by RCMs may vary with the size of the simulation domain, as well as location and66

season (Miguez-Macho et al., 2004; Castro et al., 2005). To overcome this issue, the use of nudg-67

ing or relaxation of large-scale atmospheric circulations within the interior of the computational68

domain of the RCM has been applied and proven to produce successful results (Miguez-Macho69

et al., 2004; Bowden et al., 2012; Spero et al., 2014). This method prevents the RCM solution to70

drift away from the large-scale driving fields. In addition, Spero et al. (2014) has shown that the71

spectral nudging method was successful in keeping the simulated states close to the driving state72

at large scales, while generating small-scale features and thus improving model skill.73

The implementation of a dynamical downscaling technique using a single initialization and74

spectral nudging to the large-scale patterns allows to perform a single spin-up while obtaining a75

structured and consistent solution of the regional scale climate, coping with the the soil moisture76

initialization as shown by Khodayar et al. (2014), while maintaining consistency between the77

large-scale fields of the forcing GCM (Spero et al., 2014).78

The objective this work is to compare the results obtained with a regional scale modelling79

configuration for the Iberian Peninsula, forced with a GCM and forced with a global reanalysis.80

This validation will give us confidence of the usage of the GCM to force the regional model81

in forecast simulations of the future climate under predefined anthropogenic emission scenarios.82
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The manuscript provides a description of the downscaling parametrizations and a comparison of83

model results with observations in terms of precipitation and mean and extreme values of surface84

temperature.85

2. Methods86

2.1. Regional Model87

The community model WRF version 3.5 (Skamarock et al., 2005) with the modifications per-88

formed by Fita et al. (2010) for regional climate simulation has been broadly used to produce89

climatological downscaling (Gula and Peltier, 2012; Bowden et al., 2012; Pinto et al., 2014) and90

was applied in this work to produce a dynamical climate downscaling for the Iberian Peninsula.91

Two sets of atmospheric global simulation results, from different sources, were used to provide92

initial and boundary conditions to the regional configuration. Firstly the MPI-ESM (LR) model93

with the r1i1p1 initialization, with 1.9◦ horizontal resolution and 47 hybrid sigma-pressure levels94

(Giorgetta et al., 2013) was used. This model participated in the Coupled Model Intercompari-95

son Project Phase 5 (CMIP5). As a representation of the recent-past climate, the last 20 years96

(1986-2005) Secondly the ERA-Interim reanalysis (Dee et al., 2011). The model used to generate97

the reanalysis uses a 4D-variational analysis on a spectral grid with triangular truncation of 25598

waves T255 with 80km (N128) - reduced points - Gaussian grid and a hybrid coordinate system99

with 60 vertical levels.100

These two configurations are named WRF-MPI (WRF driven by MPI-ESM) and WRF-ERA101

(WRF driven by ERA-Interim) hereinafter.102

The WRF lateral boundary conditions were provided to the model at six hour intervals, in-103

cluding the sea surface temperature update, and a spectral nudging for wave length larger than104

1000 km was considered (Miguez-Macho et al., 2004). Ferreira (2007) has tested several model105

parametrizations configuration for the Iberian Peninsula using the WRF model, comparing the106

model outputs against observations. Considering his findings, the set of parametrizations used in107

the model physical configuration were: WRF Single-moment 6-class Microphysical Scheme (Hong108

et al., 2006); Dudhia Shortwave radiation scheme (Dudhia, 1989); RRTMG (Rapid Radiative109
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Transfer Model) longwave radiation model (Mlawer et al., 1997); MM5 similarity surface layer110

scheme (Zhang and Anthes, 1982); Noah Land Surface Model (Tewari et al., 2004); Yonsei Univer-111

sity Planetary Boundary Layer scheme (Hong and Lim, 2006) and Grell-Freitas Ensemble Scheme112

for cumulus parametrization (Grell and Freitas, 2013).113

A similar set of parameterisations are used by the Group of Meteorology and Climatology from114

Aveiro University (http://climetua.ua.pt) to perform analysis and forecasts for the Portuguese115

region. Data produced by the group has been successfully used for weather forecasting and to116

force a biogeochemical ocean model for the Portuguese and Galician waters (Marta-Almeida et al.,117

2012).118

Due to the importance of land use accuracy, the Coordination of Information on the En-119

vironment Land Cover (CORINE, Bossard et al. (2000)) was implemented recategorized to be120

recognizable by the WRF model. This conversion of CORINE data into WRF categories followed121

Pineda et al. (2004). Teixeira et al. (2014) performed sensitivity test for the usage of this dataset122

in WRF simulations obtaining positive results.123

The regional WRF implementation uses three domains online nested with increasing resolution124

at a downscalling ratio of 3. The domains are illustrated in Figure 1. The coarser domain, D-1,125

covers part of the North Atlantic ocean and most of Europe, using a horizontal resolution of 81126

km. The smallest domain, with 9 km resolution, solves the Iberian Peninsula extending off-coast127

several hundreds of km.128

2.2. Model validation129

Observational data for model validation was obtained for Spain and Portugal independently.130

The Spanish dataset (Spain02, Herrera et al. (2012, 2014-submitted)), developed by the University131

of Cantabria, includes long term (from 1971 to end of 2010) gridded daily precipitation and near132

surface temperature (daily maximum, minimum and mean) at 0.11◦ resolution. The Portuguese133

dataset, created by the Portuguese Institute of Meteorology, includes only precipitation and at a134

lower horizontal resolution (0.2◦), but it is still the best observational product available. It includes135

data from 1950 to the end of 2013 (Belo-Pereira et al., 2011).136
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From these datasets of temperature and precipitation it was created a daily climatology. Then137

a temporal K-Means cluster analysis (MacQueen, 1967) was performed on the seasonal subsets138

resulting in a spatial subdivision of the domain in regions with similar temporal behaviour (mag-139

nitude and variability). The model results, from the higher resolution domain D-3, were then140

compared with observations using the clusters as a natural division of the domain. Daily clima-141

tologies of modelled precipitation and, maximum, minimum and mean temperature were created142

to compare with the daily climatologies of the observed data. Finally, the probability distribu-143

tions of the model output variables inside each cluster and for each season were compared with144

the corresponding probability distributions of the observations. The data inside each cluster was,145

thus, spatially averaged and the mean of the resulting time series was removed. The result was a146

centred probability distributions of precipitation and temperature, in distinct regions of Portugal147

and Spain, for the four seasons. The aim was to access if the shape of the observational distribu-148

tions could be reproduced by the model forced by both a GCM and a reanalysis. If WRF-MPI and149

WRF-ERA probability distributions present similar differences to the observational distributions,150

we have the confidence to use the GCM MPI-ESM (LR) to drive WRF for climatic simulations of151

future scenarios.152

The K-Means cluster analysis is a non-hierarchical clustering method which starts by computing153

the centroids for each cluster and then calculates the distances between the current data vector154

and each of the centroids, assigning the vector to the cluster whose centroid is closest to it. Since155

this is a dynamic method, meaning that vectors can change cluster after being assigned to it, this156

process is repeated until all vectors are assigned a cluster and their members are closest to the157

centroid than to the mean of other clusters (Wilks, 2011). The determination of the number of158

clusters was done using the Caliński and Harabasz (1974) pseudo F-statistic, which is based on the159

maximization of the ratio of between-cluster variance to within-cluster variance. This approach of160

domain decomposition has been successfully applied for European temperature and precipitation161

by Carvalho et al. (2015), and for Iberian Peninsula precipitation by Parracho et al. (2015). This162

clustering regionalisation technique is a robust method and with physical significance, since it163

gathers points with comparable variability. Arbitrary methods of domain partitioning, like the164
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usage of political boundaries or a fixed number of empirical regions based on distance to coast or165

other frontiers, for instance, lacks physical meaning, although still being commonly employed in166

climate and modeling studies.167

Our domain decomposition, using the observational datasets, identified four clusters for each168

season of Spanish temperatures and precipitation, and three clusters for Portuguese precipitation.169

The probability density functions were estimated using a Gaussian Kernel Density Estimator170

(Rosenblatt, 1956; Parzen, 1962) with automatic bandwidth determination using the Scott’s Rule171

(Scott, 2009). The comparison of probabability distributions of the observed and modelled vari-172

ables was done via the Kolmogorov-Smirnov test (KS-test, Kolmogorov (1933); Smirnov (1948)).173

KS-test is a nonparametric test that compares the cumulative distributions of two datasets. This174

test is robust to outliers, just like the other commonly used Mann-Whitney test (MW-test, Mann175

and Whitney (1947)), but is more robust to detect changes in the shape of the distribution than176

the MW-test (Lehmann and D’Abrera, 2006).177

3. Results178

The validation of WRF forced by the climate model (WRF-MPI) and by the reanalysis (WRF-179

ERA) is made by comparing the probability distributions of the average daily climatologies inside180

regions with temporal similarities (clusters). This analysis was done for each of the four seasons181

and for temperature and precipitation over Spain, and for precipitation over Portugal.182

The results for the maximum near surface temperature is shown if Figure 2. The figure is183

organised so that each row corresponds to one season, the first column shows the clusters subdivi-184

sion and the other columns show the probability distributions of the observations (Ob) and model185

results. The KS-test statistic (d-value, maximum distance between the cumulative distributions)186

and p-value of the pairs Ob vs WRF-ERA and Ob vs WRF-MPI are shown inside each subplot.187

High p-values or low d-values indicate the null hypothesis that both groups were sampled from188

populations with similar distribution, cannot be rejected.189

The results of maximum temperature identify a hotter region in southern Spain and a colder190

region occupying in general all the north of the Peninsula and a small region in the south (west An-191
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dalućıa). The winter (DJF) and summer (JJA) results clear show a larger departure of WRF-MPI192

from the observations, both in terms of magnitude and shape of the distribution, with associated193

p-values decreasing to 0.02 and 0.05 in the summer. Spring WRF-MPI has a much better corre-194

spondence to the observations. In autumn we have a mixed WRF-MPI behaviour, with regions195

with high p-values and regions with low p-values. WRF-ERA has much higher p-value in all the196

regions and all seasons, as can be easily observed by the shape of the distributions which are very197

close to the Ob distributions.198

The probability distributions of the mean temperature (Figure 3) show a similar spatial pat-199

tern of the cluster subdivisions, with a northward decrease of temperature. The KS-test exhibits200

in general improved values for WRF-MPI (compared to the values obtained for maximum tem-201

perature), especially for the summer months, showing an increase in the p-values above the 0.05202

threshold and a decrease in the d-values of all the cluster regions.203

Minimum temperatures (Figure 4) show better agreement for WRF-MPI, comparable to WRF-204

ERA in some seasons/regions, and even higher for the colder summer regions. A much closer shape205

of the distributions is evident, relatively to the maximum and mean temperatures.206

Regarding daily climatological total precipitation over Spain (Figure 5), a very well defined207

subdivision of the region was obtained with the cluster analysis, with Galicia and Northern Spain208

having higher precipitation and the central and Mediterranean regions with lower values. An209

overall agreement between model results and observations was obtained, considering the difficulty210

to model the convective precipitation (e.g. Yang et al., 2012). Still, low p-values are obtained for211

high precipitation regions during winter. There is not a clear definition of which model results212

perform better (WRF-MPI or WRF-ERA). During the summer, the lowest precipitation region213

shows a very high p-value for WRF-MPI (0.99) and very low for WRF-ERA (0.00). Spring and214

autumn show reasonably good and comparable p-values for both models. The worst season/region215

combination in terms of model capacity to follow observations is the winter high precipitation216

Galician region, where p-values are below 0.05.217

The results for precipitation over Portugal, depicted in Figure 6, show maximum values in the218

North Atlantic region through all the year. Lowest precipitation is found in the southern region219
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and in general in all the eastern side. The best comparison of probability distributions occur during220

the autumn. In all other seasons, p-values are notoriously low. In the three regions and for the221

seasons winter to spring, WRF-MPI values are three times lower than 0.05 and WRF-ERA values222

are seven times below 0.05.223

4. Analysis224

The regionalisation of the observational domains, followed by spatial averanging in each sub-225

region, decreased the dimension of the data, allowing the representation of the annual cycle of226

temperature and precipitation fields by probability distributions for each season, appears to be227

a successful technique. The subregions obtained obey the empirical and bibliographic knowledge228

on the intensity and variability of temperature and precipitation of the Iberian Peninsula, namely229

the high rain in northwest Portugal, Galicia and the rest of northern Spain, the drier southern230

Portugal and southern/central Spain, and the higher temperatures in southern Spain.231

The subregions have complex geometries, and even having been calculated according to the232

intensity and variability of daily climatologies, we get satisfied whenever the statistical test com-233

paring the distribution of observed data and model result return a p-value above the threshold234

0.05 (the usual level of significance). Values higher than this indicate we should not reject the235

hypothesis that the sets belong to populations with the same probability distribution. This hap-236

pened in most of the regions/seasons for Spanish temperature and precipitation. The zero p-value237

obtained for the WRF-ERA Spanish summer precipitation in the lowest precipitation region is not238

significant because the days without precipitation were not removed before the analysis. So, even239

a small precipitation difference may result in high relative differences an hence a bad comparison240

with the KS-test. Low p-values are also obtained for the high precipitation region (west Galicia)241

during the winter. This may be associated with the difficulty of simulating convective precipitation242

(e.g. Yang et al., 2012), even using convective resolving resolution. Some effort could be positive243

on the attempt to improve the capacity of the model to reproduce the highest precipitation value,244

namely by assessing the model performance with different combinations of horizontal and vertical245

resolution and convective parameterisations.246
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The highest temperatures returned by the model forced by the CGM (WRF-MPI) also show247

poor comparison with observations. On the other hand, the model forced by reanalysis compares248

very well. Reanalysis is based on the usage of realistic initial conditions and continuous assimila-249

tions. So, in the end, the result obtained for the very difficult to reproduce maximum temperature250

(e.g. Sillmann et al., 2014), is not strange. We accept the result specially because the probability251

distributions of WRF-MPI actually exhibit, with distortions, the same features of the observations.252

The results for the Portuguese precipitation are quite surprising. Over Spain, the comparison253

among the datasets is fairly good, but over Portugal the distributions differ substantially, even254

without important geographic differences that could justify such behaviour. Basically the unique255

distinction is the source of the datasets. The Portuguese dataset has about half the resolution256

of the Spanish dataset and was created based on Ordinary Kriging Interpolation, and a sparse257

observational network in large portions of the country. The Spanish higher resolution dataset258

is continuously evolving and includes improved interpolation methodologies and data correction259

schemes.260

5. Conclusion261

The atmospheric model WRF was parameterised to perform high resolution climate simulations262

of a nested configuration of the Iberian Peninsula. In order to validate the model ability to simulate263

scenarios for the future, driven by a GCM, we decided to do two simulations for the past (20 years,264

1996 to 2005), one forced by the GCM, other forced by ERA-Interim. The chosen GCM was265

MPI-ESM (LR). If historic simulations with both forcings result in a similar comparison with266

observations, we shall feel justified the continuity of the usage of the GCM to force future climate267

simulations of WRF.268

The observational datasets used include extremes and mean temperature over Spain and precip-269

itations for both Portugal and Spain. The comparison was done in terms of probability distribution270

of daily climatologies inside subregions of the observational domain. These subregions were cal-271

culated using a cluster analysis technique, which gathers spatially points with similar temporal272

behaviour. Inside each cluster, observed and modelled data was spatially averaged and the prob-273
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ability distribution of the resulting time series was estimated. This procedure was done for each274

season separately.275

The results show an overall acceptable comparison of both models with observations, with sea-276

sons/regions where model forced with reanalysis (WRF-ERA) performs better, but also occasions277

when the comparison for WRF-MPI was better. In general, however, WRF-ERA gave probability278

distributions closer to the observed ones.279

In spite of the difficulty of simulate extremes of atmospheric variables, like maximum tem-280

perature and extreme precipitation, in continuous long term simulations, without reinitialisation281

and/or data assimilation, the statistical test used to compare the probability distributions gave in282

general good results, i.e., in most of the occasions it cannot be rejected that the datasests compared283

belong to the same distribution.284

The worst results were obtained for the precipitation over Portugal, in disagreement with the285

comparison done for precipitation over Spain. Since apparently more effort has been dedicated to286

the Spanish dataset, we are forced to trust our comparison with the Spanish precipitation. Also,287

even assuming the same quality of the observations, the differences in the observational network,288

differences in the resolution of the final dataset, in the data correction approaches and interpo-289

lations methodologies employed, may result in important discrepancies among the observational290

datasets.291

Considering the results obtained, we feel confidence on the usage of the WRF-MPI to perform292

climate simulations of the future. Such task is already underway and the results will be analysed293

soon.294

Acknowledgements295

This study was supported by FEDER funds through the Programa Operacional Factores de296

Competitividade COMPETE and by Portuguese national funds through FCT - Fundação para297

a Ciência e a Tecnologia, within the framework of the following projects: CLIPE Project Ref-298

erence PTDC/AAC-CLI/111733/2009; CLICURB EXCL/AAG-MAA/0383/2012. The authors299

thank AEMET and UC for the data provided for this work (Spain02 dataset, http://www.300

11

http://www.meteo.unican.es/datasets/spain02
http://www.meteo.unican.es/datasets/spain02
http://www.meteo.unican.es/datasets/spain02


meteo.unican.es/datasets/spain02) The authors thank IPMA for the Portuguese precipita-301

tion dataset.302

6. References303

Belo-Pereira, M., Dutra, E., Viterbo, P., 2011. Evaluation of global precipitation data sets over304

the Iberian Peninsula. Journal of Geophysical Research 116.305

Bossard, M., Feranec, J., Otahel, J., 2000. CORINE land cover technical guide - Addendum 2000.306

Tech. Rep. 40, European Environmental Agency, Copenhagen.307

Bowden, J. H., Otte, T. L., Nolte, C. G., Otte, M. J., 2012. Examining interior grid nudging308

techniques using two-way nesting in the WRF model for regional climate modeling. Journal of309

Climate 25, 2805–2823.310
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Figure 1: Model domain used in the regional WRF implementation. Model ran in 2-way nesting mode with

increasing domain resolutions of 81, 27 and 9 km.
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Figure 2: Regionalisation of the observed Spanish maximum temperature (◦C) daily climatology and comparison

of observed and modelled probability distribution of the spatial average inside each subregion. The probability

distribution of the observations corresponds to the grey line; red line corresponds to the model forced by the

ERA-Interim reanalysis (WRF-ERA); blue line corresponds to WRF model results forced with the MPI GCM

(WRF-MPI). The numbers inside the subplots indicate the KS-test statistic (down) and p-value (up) corresponding

to the comparison of observations with WRF-ERA (red) and with WRF-MPI (blue). Each row refers to one

season (DJF means December, January and February, etc). The subplots are ordered with increasing mean value

of the observed variable (subtracted from the data prior to the estimation of the probability distributions), and the

corresponding cluster is indicated by the colour of the circular marker inside the winter subplots (1st row).
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Figure 3: Same as Figure 2 but for mean temperature.
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Figure 4: Same as Figure 2 but for minimum temperature.
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Figure 5: Same as Figure 2 but for total precipitation (mm day−1).
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Figure 6: Same as Figure 5 but for the total precipitation (mm day−1) over Portugal.
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