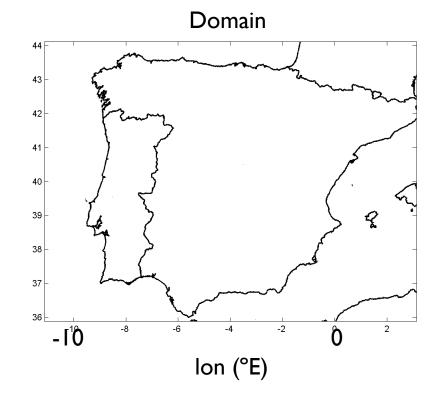


International Conference on Ecohydrology, Soil and Climate Change, 2014

Regionalization of precipitation for the Iberian Peninsula

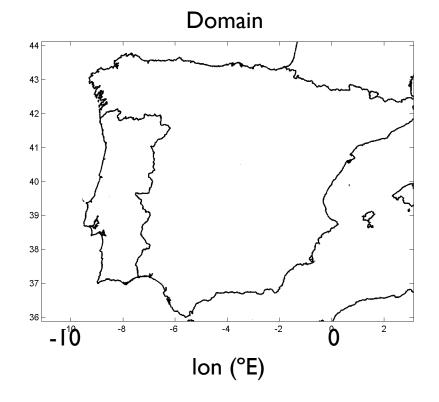
A.C. Parracho, P. Melo-Gonçalves, A. Rocha

Introduction

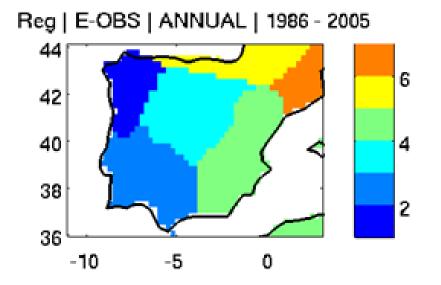

 Temporal variability of precipitation over the Iberian Peninsula (IP) has high spatial gradients;

- Some statistics (such as Probability Density Functions), cannot be displayed over a map;
- To overcome this, a reduction of the time series representative of the IP domain is crucial;
- In this work, we propose a partition of the IP region into areas of similar precipitation, using cluster analysis.

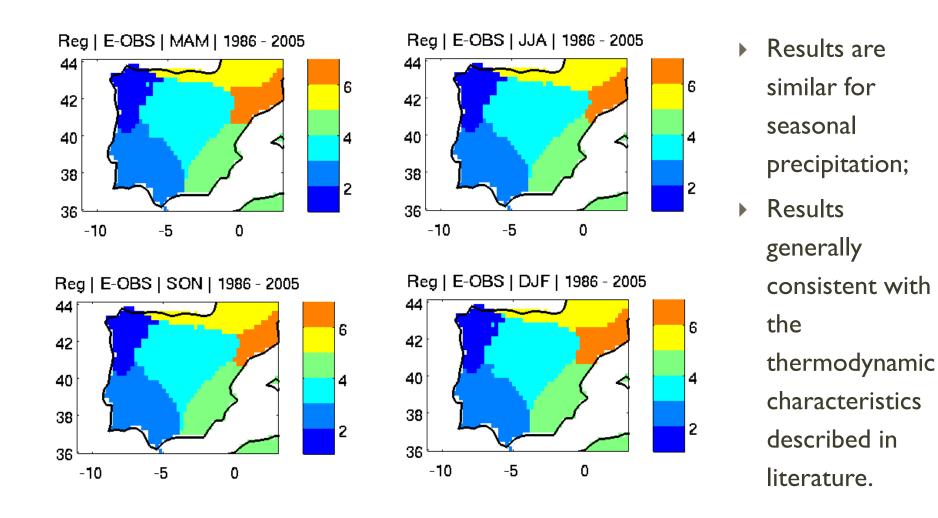
Data Set & Methods


Data:

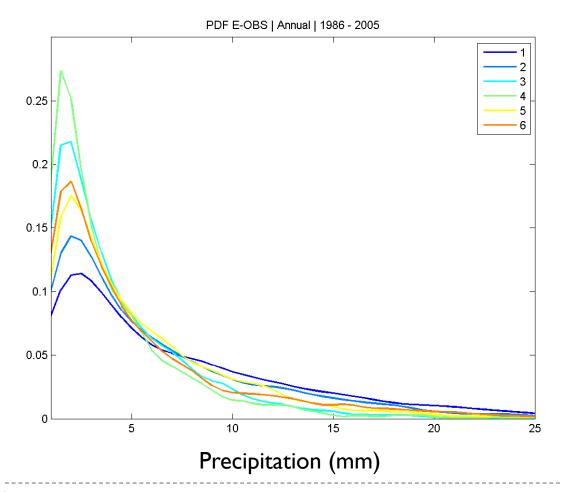
- Daily observed precipitation data (E-OBS):
 - from 1986-2005:
 - \Box land-only;
 - \Box high resolution (0.25°);
 - $\hfill\square$ on a regular grid.
- Over the Iberian Peninsula region.



Data Set & Methods

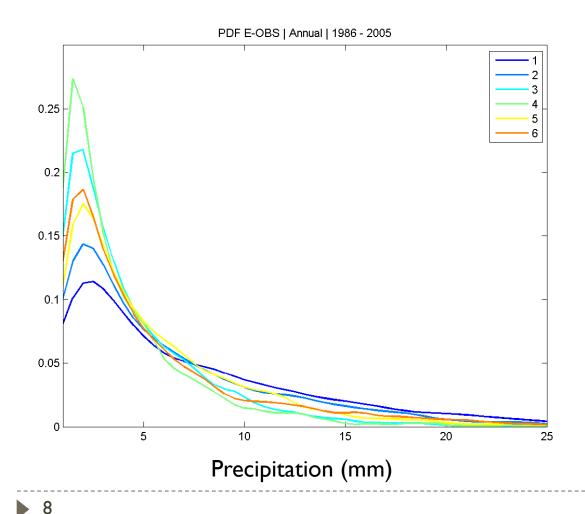

- Methods:
 - K-means Cluster Analysis:
 - Iterative partitioning that minimizes the sum, over all clusters, of the within-cluster sums of point-to-clustercentroid distances;
 - Using the squared Euclidean distance - each centroid is the mean of the points in that cluster;
 - 6 clusters;
 - Results are time series of the centroids for each region.

Regionalization

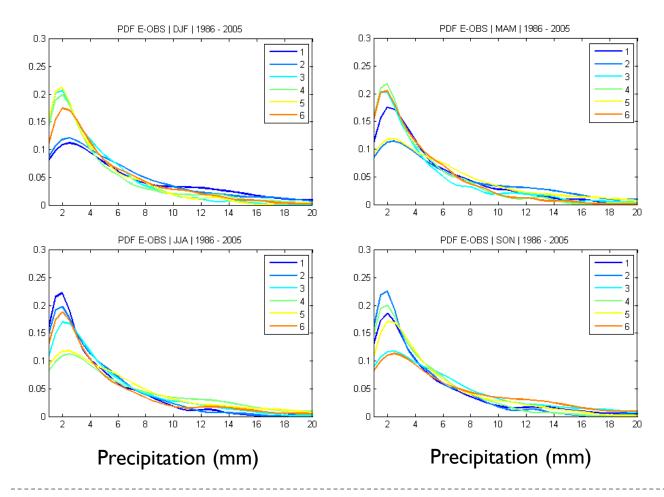


- Regions:
 - I. Northwest Iberia;
 - 2. Large region from the center to the western and southwestern shores of the IP;
 - 3. Middle of the IP;
 - 4. Large region extending from the center to the eastern and southeastern shores of the IP;
 - 5. North (Asturias) and northeast Spain (Pyrenees);
 - 6. Northeastern Iberia near France.

6


Probability Density Functions

 Estimated by the Kernel method (Silverman, 1986) with a normalized Kernel function.


 The density was evaluated in 100 equally spaced points that cover the range of values in each data set.

Probability Density Functions

- Marked differences between regions:
 - Region I: higher precipitation; higher probability for precipitation over about 8 mm.
 - Region 4: lower precipitation; higher probability of precipitation under 5 mm.

Probability Density Functions

 Seasonal PDFs also show some differences between regions.

K-S Test

- Used to determine if the regions are statistically different from each other.
- The K-S test (Wilks, 2006) establishes a null-hypothesis that the datasets belong to the same continuous distribution.
- This hypothesis is rejected if the discrepancy, D, is high enough.

$$D_s = \max(|F1(x_1) - F2(x_2)|)$$

$$D_S > \sqrt{-\frac{1}{2}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)\ln\left(\frac{\alpha}{2}\right)}$$

Result: annual & seasonal precipitation at the centroids of the six regions are statistically different from each other.

Application: trends in precipitation indices

Index	Reg	Annual	
PRCPTOT (mm/year)	I	<u>-5.1889</u>	
	2	-1.2503	
	3	-0.9344	
	4	-0.6935	
	5	-5.1820	
	6	-4.3402	
CDD (N _{days} /year)		-0.2250	
	2	<u>-0.7735</u>	
	3	0	
	4	-0.065 l	
	5	0.0646	
	6	-0.1667	
R90p (mm/day/year)	I	0.0213	
	2	-0.0014	
	3	-0.0046	
	4	0.0293	
	5	0.0074	
	6	-0.0635	

- Precipitation Indices
 - PRCPTOT annual total precipitation
 - CDD Maximum number of consecutive dry days
 - R90p 90th percentile in distribution at wet days
- Trends were computed using the Theil-Sen Regression (Theil, 1950 & Sen, 1968)
- Their statistical significance was tested using the Mann-Kendall Test (Mann, 1945 & Kendall, 1955), at a 95% significance level.

Application: trends in precipitation indices

Index	Reg	Annual	DJF	MAM	JJA	SON
PRCPTOT (mm/year)	I	<u>-5.1889</u>	<u>-5.5623</u>	-1.4657	-0.3421	-0.4339
	2	-1.2503	-0.7010	<u>6.7950</u>	-0.9946	-0.6112
	3	-0.9344	-0.4068	-1.6113	I.8884	4.0068
	4	-0.6935	<u>2.5103</u>	0.8250	<u>-4.4478</u>	-0.1148
	5	-5.1820	0.6606	<u>4.2162</u>	<u>-4.6150</u>	<u>-3.2002</u>
	6	-4.3402	0.2693	I.7450	2.5263	2.0201
CDD (N _{days} /year)	l	-0.2250	0	0	-0.0312	0
	2	<u>-0.7735</u>	-0.0294	0	0.3333	0
	3	0	0.0590	0.1250	-0.1082	<u>0.0955</u>
	4	-0.0651	<u>-0.2500</u>	0	0.1270	0.08712
	5	0.0646	0.2222	0	<u>1.0000</u>	0.1082
	6	-0.1667	-0.0667	0	0	-0.1000
R90p (mm/day/year)		0.0213	-0.1091	-0.0381	-0.0411	0.0417
	2	-0.0014	-0.0024	0.2757	0.0207	-0.0082
	3	-0.0046	0.0243	<u>-0.2422</u>	0.0547	0.2629
	4	0.0293	0.0901	0.0953	0.0130	0.0616
	5	0.0074	-0.0512	<u>0.2812</u>	-0.1383	-0.1072
	6	-0.0635	0.0092	0.0264	<u>0.1905</u>	0.0668

Conclusions

• We conclude that:

- The identified regions of the IP can be used to represent the Iberian precipitation by six time series;
- These series can be subjected to further analysis with results that can be presented in a concise manner, which would otherwise be impossible.
- The methodology used here, based on Cluster Analysis, can be used to regionalize other areas of the world;

References

- Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones, M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and precipitation. J. Geophys. Res (Atmospheres), 113, D20119, doi:10.1029/2008JD10201
- Kendall, M. G. (1955). Rank Correlation Methods. Griffin, London.
- Mann, H.B. (1945). Nonparametric tests against trend. Econometrica, 13, pp. 245–259
- Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. J. Amer. Statist. Assoc., 63, 1379-1389.
- Silverman B. W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall: London, 175 pp.
- Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, I. Proc. Kon. Ned. Akad. v. Wetensch. A53, 386-392.
- Wilks, D. S. (2006). Statistical Methods In Atmospheric Sciences. Elsevier, 649 pp.

Acknowledgements

- We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu)
- This study was supported by FEDER funds through the Programa Operacional Factores de Competitividade – COMPETE and by Portuguese national funds through FCT – Fundação para a Ciência e a Tecnologia, within the framework of the project CLIPE, Project Reference PTDC/ AAC-CLI/111733/2009

UNIÃO EUROPEIA Fundo Europeu de Desenvolvimento Regional

