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SUMMARY

This work assesses the performance of the Regional Climate Models used in the European FP6 project
ENSEMBLES, in simulating historical (1961-2000) annual and seasonal extremes of daily-total precipitation,
daily-minimum and daily-maximum surface temperatures in the Iberian Peninsula, at an horizontal spatial
resolution of approximately 25km. Two ensembles of simulations performed by these regional models are
analysed in conjunction with the observed gridded dataset provided by the European Climate Assessment &
Dataset. In one ensemble, all models downscaled ERA40 data, while in the second ensemble, each regional
model downscaled at least one Global Climate Model simulation. Annual and seasonal statistics of daily
extremes of precipitation and surface temperatures are quantified by the indices proposed by the
CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices. The performance of the modelsis
accessed for both the mean state and interannual variability of these annual and seasonal indices. In addition,
we also provide estimates of the recent-past climate change and the ability of the RCMs to reproduce it, taking
into account the associated uncertainties.

1. Introduction

Climate Change (CC) plays an important role in sslvareas of everyday life (Field et al. 2012) amduld
therefore be studied in depth, both to understaedchanges that the Planet has undertaken and yiode
come. While the recent-past can easily be studjedsing observations, future climate changesaray be
estimated through the use of Climate Models. Régetite downscaling of Global Climate Models (GChs
been done by using these to force Regional Clirvddels (RCM) of higher resolution. In a study of dets
behaviour in the Alpine region, Prommel et al. 2@0nd that the use of a RCM had added value far 2-
temperature in the region, especially in regionsashplex orography and coastal regions.

According to Déqué et al. (2007, 2012) there atg fmurces of error in climate simulations - santpkrror,
model uncertainty, radiative uncertainty and boupdmcertainty — of which the boundary forcing viasnd to

be the most dominant for temperature data fromRR&DENCE project. They also added that the southern
western Europe was the most affected area by thedawoy uncertainty, whereas continental

areas were more sensitive to the choice of RCM.a4 W mitigate the uncertainty associated to th@oshof
RCM and GCM is to perform an ensemble of severaMR&CM combinations (Gallardo et al. 2012).
Furthermore, Maraun (2012) found that performir8JAS correction or even eliminating the outlier silations
would improve the performance of the simulations.

The performance assessment of a model simulatiomotabe assessed using only one climate statistical
characteristic, since some are easier to reprothaceothers. Maxino et al. (2008) used precipitgtimaximum

and minimum temperatures in order to evaluate #rdopmance of the models submitted for the Intéomat
Panel on Climate Change's (IPCC) Fourth Assess(@d) over the Murray-Darling basin in Australiahfy
attempted to do so by using the mean and ProbabBitribution Functions (PDFs) of each of the aates and
found that overall models would accurately repradtite observed means but showed poorer resulthédor
PDFs. Still using the AR4 maximum and minimum teraperes for the Australian region, Perkins et 201(3)
applied 3 different methods to assess differencethe 20 year temperature extremes as a functianaafel
skill. The validation was performed through:



1. Difference between annual means;
2. PDF overlap;
3. Difference of the tail of the PDFs.
They found that a PDF or tail-based measure ispabfe to the mean.

The study of climate change has increasingly fodume the extreme events of temperature and pratimit
since these are more commonly cause for destruatidrioss of life - for example the 2003 Europeeatlwave
(Bucker, 2005) and the Madeira Island extreme pittion event (Luna et al., 2011).

2. Methodology

In order to compare the model results with obsémaat the simulations were split into two groupSRA40-
driven and GCM-driven. For each of the groups, @mitable weight ensemble was determined, along thith
uncertainty using the Interquartile Range (IQR).

In order to achieve the goal of this work of aseggthe performance of the simulations, two appheacwere
followed. Firstly, the seasonal climatologies of thariables were used to ascertain differences ematw
observations and ensembles. Afterwards, extremeaadrom the CCI/CLIVAR/JCOMM Expert Team on
Climate Change Detection and Indices (ETCCDI) wesed. This multi-perspective approach allows farae
comprehensive understanding of the simulationsatehr since it studies, not only the mean but dle
extremes of the variables. The indices used weréolfowing:

* Consecutive Dry Days (CDD) — Greatest number oBeoutive days with precipitation under 1 mm.

»  Consecutive Wet Days (CWD) — Greatest number o$eoutive days with precipitation over 1 mm.

e Extreme Temperature Range (ETR) — Maximum diffeeebetween maximum and minimum daily

temperatures.

Furthermore, other extreme indices were considered:
e pr90p — number of days with precipitation above3@th percentile of precipitation.
e tasmax90p — number of days with maximum temperatwer the 90th percentile of maximum
temperature.
e TasminlOp — number of days with minimum temperatoetow the 10th percentile of minimum
temperature.
The reference percentiles were determined for &aloperiod between 1960 and 1990.

These indices were determined for each of the sitials and the observations, after which two ebiéta
weight ensembles were determined: the ERA40-drarehthe GCM-driven.

Taking the ensembles of these indices, their trelad determined using a simple linear regressiod, an
compared to the observed trend. These trends kadsthtistical significance tested.

In order to assess the closeness of the ensendide#butions to the observed ones, the Kolmogdsavirnov
(K-S) test was applied to the original variables@ipitation, maximum and minimum temperature) & as
the ensembles of the indices. For the points wiiseeensemble distribution is considered to be stieaily
similar to the observed distribution at the 5% letree test statistics was represented (Equation 1)

Dp=max|M-Q| 1)

Where M and Q are the values of the ensemble mean and obseB®Ed, Pespectively, at each of the bin values
OF

3. Data

The European FP6 project ENSEMBLES (http://www.emnsles-eu.org/) provides a 16 member ensemble of
climate simulations which can be divided into twetss ERA40-driven (Regional Models driven by ERA40

reanalysis) and GCM-driven (Regional Models drignGlobal Climate Models). Of all the simulations.ae

available by the project, only those with the sagrid were chosen, in order to avoid interpolatiwhjch could
act as an additional source of error.



RCM Driving Global Climate Model

BCM | ECHAM5 HadCM EEOA
Low S. Normal S. High S.
3Q3 3Q0 3Q16
RACMO X X
Had | Low S. X
RM
Normal
S X
High S. X
REMO X
RCA X X

Table 1: Combinations of RCM and GCM used from those available from the ENSEMBLES Project

Also, observed data, E-OBS (V5.0) provided by th&ropean Climate Assessment & Dataset (ECA&D)
(http://feca.knmi.nl) was used. Recent-past (1961602@aily values of minimum and maximum temperaase
well as total precipitation were used on a rotaged of 0.22° x 0.22°. The integration domain udsgdthe
ENSEMBLES Project includes the entire Europeanioental territory. However, the focus of this wasks a
domain containing only the Iberian Peninsula, whHopegraphy can be seen in figure 1.

Figure 1: Topography of the
domain (m) using the USGS
GTOPO 30 database.

4., Results & Discussion

The first thing to look at is the
ensemble and observed
climatologies of the original
variables: precipitation, minimum
and maximum temperatures. By
calculating the spatial mean of the seasonal ctilngtes these three sets of data together withutioertainties
of the ensembles, one can have a general ide@iofréhative behaviour. As can be seen in figuroRall three
variables the ERA40-driven ensemble has betteropmdnce (simulations closer to observations) than t
GCM-driven ensembles, as would be expected. Furthker, GCM-driven ensemble shows far larger
(approximately twice as large) uncertainty when pared to ERA40-driven ensemble. These differences a
especially evident for precipitation while as femperature, GCM-driven and ERA40-driven ensembbesvs
closer results when comparing to observations. drilg exception is summer precipitation which shdaser
uncertainty and better performance by both ensesnhthich is easily explained by the fact that sumisghe
driest season in the domain.

Although this work was developed for both ERA40vdri and GCM-driven ensemble means, due to space
constraints only results for the latter will be ggated hereafter although a short discussion df it be
introduced in the conclusion and therefore, the troanof ensemble will be referring to the GCM-dnive
ensemble.

The analysis of the spatial mean of seasonal dilogy of the observed and GCM-driven indices showey
different results from those obtained for the avadivariables. While the maximum and minimum terapaes
ensemble showed better performance than the ptattgp one, the opposite happens to the indices.
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Figure 2: Spatial Mean of the climatology of the variables using the GCM-driven and ERA40-driven ensembles
(and their uncertainty) aswell as observations.

Both the number of consecutive dry and wet daysdCind CWD) proved to be well represented by the
ensemble, since the ensemble mean values of timatoliogies’ spatial mean were close to the obseoress
(and inside the uncertainty of the ensemble). BB@rthe uncertainty surrounding the ensemble cation was
high, neighbouring 30%. On the other hand, pr9Opwshl far worse results, with the consistent gross
underestimation of the index by the ensemble, ¢heugh the latter presented with low uncertaintyisTresult
points to good ensemble capability of estimating ttatio of rain/no-rain days with difficulties irhe
determination of rain amount.

Temperature indices proved to be less accurate @an and CWD. While tasmax90p and tasminl0p are
grossly overestimated by the ensemble (by appraeimnd © C) ETR is underestimated by ~6 days. Bfengh

the ensemble uncertainty for these indices is Iderraverage 11% for both tasmin10p and tasmax8828%

for ETR) observation points were without exceptiontside the uncertainty bars. Therefore, all mogebduce
more warmer (tasmax90p) and colder (tasminl0p) ,dadle simulating lower overall difference between
maximum and minimum temperature.
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Figure 3: K-Stest gtatistics (D,,) between the ensemble mean GCM-driven and OBS, using the distributions of
yearly values of each of the indices: a) pr90p, b) CDD and c) CWD. For black grid boxes, differences between
PDFs are not statistically significant (5%) and D,, is hot shown.

As happened for the spatial mean of climatolodieste are clear differences in the ensemble pednom for
precipitation and temperature indices when theiF®Bre analysed. As mentioned in the Methodologticsg
the K-S test was applied in order to assess tliepgints where each of the indices’ modelled distibn was
considered as statistically similar to the obsermeel at the 5% confidence level.

Precipitation indices show that the index modeRé&- is similar to the observed one at the 5% cenfié level
in most of the grid points (all of them for pr90pdamost of them for the other two indices) — fig@re-or the
points where the null hypothesis (distributions #re same) cannot be rejected, the test statiffigs was
represented. For pro0p, the lowest\lues are found to be at the northern part ofilleeian west coast and
along the Pyrenees. On the other hand, the lowesttést statistics for CWD are found mostly in Bgttese
territory while Spain presents higher (mostly alahg eastern coastline) differences between matielfed
observed PDF. The K-S test statistics field for ninenber of dry days (CDD) does not show a cleatepatof
lower and higher values, albeit having the ovdmllest (approximately half) values when comparethtotwo
other indices.

When comparing the temperature indices’ modelledi @rserved PDFs using the K-S test (not shownjltees
show worst ensemble performance. For both tasmaa®@ptasmin10p, most of the grid points rejectribi
hypothesis “the distributions are the same” andréreaining ones show no clear pattern of lower/aigh,
values. For ETR, on the other hand, although atsdnly a high percentage of points with statisticdifferent
distributions, shows that higher values of the #®atistics can be found along the southern pathefwest
Portuguese coastline, with the rest of the domegsenting lower, close to zerg.D



In order to further understand the differences betwthe GCM-driven ensemble and observations,aasosal
climatologies of the indices were calculated focteaf the two sets of data and the difference fl@€CM -
OBS) was represented.

The pr90p and CDD difference fields (not shown)vshihat the underestimation of these indices by the
ensemble is consistent in the domain, with only tlear exceptions:

« Pr90p summer difference field has a horizontal balotg the southern coastline and that extends for
about 300 km north of lower absolute values.

« CDD spring difference field shows lower differenealues (more negative) in the north/north-west
region of the IP.
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Figure 4: CWD difference field between GCM-driven ensemble and observations for the winter.

CWD difference fields (for winter these fields akown in figure 4) show that the overestimationttedse
indices is larger in areas of complex topograptspeeially in the Pyrenees. Furthermore, for sumaereat
autumn, the difference fields also present a chesst/east pattern of negative/positive values.

As for the temperatures indices’ difference fieldssults become more varied (not shown). For taSfm@x
while winter and spring show almost exclusively aidge values (except a small area in the Pyrenadsdgl
winter), summer shows positive values along thetevasand northern areas and autumn shows a spatiall
consistent overestimation, with the same magnitfdee underestimation during the other seasons.

The difference fields for tasmin10p seasonal clotwgties, show more seasonal and spatial variati®psng is
the only season which shows the same signal (pe}iti the entire domain, with higher values in soeith and
north-east. These regions are the ones showingvgodifference values in the summer, in an othsewiositive
field.

The winter difference field can be seen in figureAs can be seen, there are three areas of higtiveos
differences: south western coastal region, the&ievada and the Pyrenees. The summer field ifasita the
winter but with lower differences.
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Figure 5: Tasmin10p difference field between GCM-driven ensemble and observations for the winter (DJF).

Extreme temperature range (ETR) shows a clear tialp of mostly positive/negative values for sumraad
autumn/winter and spring.



Other skill measures such as the Root Mean Squam ERMSE), the Standard Deviation of the ERROR
(STDE) and Pearson Correlation were applied botlth&o ensemble, as well as the individual simulation
However, due to space constraints, those resdtaatrpresented here.

5. Conclusion

Climate simulations are an important tool in ortbeforesee changes that will occur in the futuspeeially with

the impact that these can have on everyday lifeesssuch as water and energy management, agresultur
fisheries and health. However helpful, there ishhigcertainty associated with the results, bedimfrmodel
uncertainty or the radiative forcing. Therefore b#comes important to assess the ability of the etsotb
reproduce the current and recent-past climatederdio understand their shortfalls.

By comparing model results with an observationabbase, there is the possibility to assess thablas and
regions where models are less accurate and therefdrere their results should be taken into accoumte
carefully. Since the extreme events are a majorceoef destruction and loss of life, this work feed on them.

When using simulations from GCMs to force RCMs réhare already two sources of error. As this amalys
showed, there is added shift from of the GCM-drivarsemble from observations, when compared to the
ERA40-driven ensemble. Furthermore, the uncertafthe first is also far greater than that of ldtger.

From the comparison between precipitation and teatpee, an interesting conclusion can be drawrhdlgh
there is better performance by the maximum and minmi temperatures ensembles, precipitation indices
outperform the temperature ones.

Lastly, the ensembles showed lower performancedasawhere the topography is complex (high mouatein
regions such as the Pyrenees) and along the cmesstihese may be due to the resolution of therlbaendary
condition and the water-land frontier.
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